Short-Range Correlations: Current Status and the path forward

Dien Nguyen CIPANP-15, Madison, June 2025

Short-range correlations (SRCs) are a universal feature of nuclei.

- All nuclei have them
- Nucleon pair close together
- High-momentum nucleons
- Back-to-back momenta
- ≈10–20% of nucleons

SRCs play a role in many open questions of nuclear, hadronic physics.

1. Nuclear structure

- How do correlations form?
- What type of pairs?
- SRCs influence nuclear properties.

SRCs play a role in many open questions of nuclear, hadronic physics.

1. Nuclear structure

- 2. Nuclear matter at high density
 - High-density laboratory
 - Effective NN forces at short-distances
 - Connection to neutron star matter

SRCs play a role in many open questions of nuclear, hadronic physics.

1. Nuclear structure

2. Nuclear matter at high density

- 3. Hadronic-Partonic bridge
 - EMC Effect
 - Emergence of quark d.o.f.s

In this talk:

How do we probe SRCs?

Using electron scattering

What have we learned about SRC?

Recent results from SRC studies

The path forward

- New data coming
- Different probes
- Open questions

Probing SRC using electron Quasi-elastic scattering

Quasi-elastic: electron scatters elastically off an almost free nucleon.

SRC studies with electron scattering at JLab

Electron beam to probe nuclear targets

Hall A: HRS

Hall B: CLAS, CLAS12

Hall C: HMS, SHMS

Inclusive scattering: SRC is dominant at high x_B and Q^2

9

Scaling and pair abundance in inclusive scattering

S. Li Nature (2022), Schmookler Nature (2019), Fomin PRL (2008), Egiyan PRL (2006), Egiyan PRC (2003),), L. L. Frankfurt, PRC (1993)

10

SRC: Universal High-momentum tail

Nucleons in ¹²C

L. Frankfurt et al. ,PRC (1993), K. Egiyan et al., PRC (2003), K. Egiyan et al PRL (2006). N. Fomin et al., PRL (2012), O. Hen et al., PRC (2012),

Scaling persist down to $x_B = 1$, $P_{miss} > 350$ MeV

(e, e'p) data from CLAS

I. Korover, A. Denniston et al. (CLAS), PRC (2023)

Transition from mean-field (MF) to SRC.

- Narrow transition from MF to SRC (250 MeV – 350 MeV)

I. Korover, A. Denniston et al. (CLAS), PRC (2023)

A=3 nuclei: Ideal systems to test theory calculations

(e.e') data from Hall A JLab

- Theory calculations agree well up to high x_B and Q^2

See Ronen's talk

A=3 nuclei: Ideal systems to test theory calculations

(e.e'p) data from Hall A JLab

- Data and theoretical calculations agree within 10% up to 500 MeV/c

R. Cruz-Torres, D. Nguyen, PRL(2020). R. Cruz-Torres PLB (2019). See Ronen's talk 15

A=3 nuclei: Ideal systems to test theory calculations

(e.e'p) data from Hall A JLab

See Ronen's talk **16**

Two-nucleon knockout studies

Looking for High missing-momentum nucleon ($k > k_F$) and recoil partner

SRCs are predominantly in neutron-proton pairs

All knocked out high momentum protons ($k > k_F$) have recoiled partner nucleon with high momentum in the opposite direction

SRCs are predominantly in neutron-proton pairs

M. Duer et al., Phys. Rev. Lett. 122 (2019).A. Schmidt et al. (CLAS), Nature 578 (2020).O. Hen et al., Science 346 (2014).R. Subedi et al., Science 320 (2008).

Preference for np pairs is less strong in the A=3 system.

See John Arring **20**n's talk

SRC pair center of mass momentum

Cohen, PRL (2018)

New SRC data on nuclear targets are under analysis!

- Hall C
 - XEM2: Inclusive x>1 experiment on nuclear targets
 - CaFe (*e*, *e*′*p*) experiment: 40Ca, 48Ca, 54Fe
- CLAS-12
 - Nuclear targets experiment
 - 40Ca, 48Ca targets

XEM2: Inclusive x> 1 experiment

- What we can learn about SRC:
 - Understanding A and N/Z dependence of a2

XEM2: Inclusive x> 1 experiment

What we can learn about SRC:

- Understanding A and N/Z dependence of a2
- Looking for signal of 3N-SRC
 - Second scaling regime?

CLAS12 SRC Experiment (Run Group M)

JLab E12-17-006A

- Nov 10, 2021 Feb 7, 2022
- > 300 fb⁻¹
 - >10x improvement over CLAS6
- Targets: H, d, ⁴He, ¹²C, ^{40,48}Ca, ¹²⁰Sn
- 2, 4, and 6 GeV beam
- CLAS12 Spectrometer

(e,e'p), (e,e'pp), (e,e'pn)

Goal: Direct detection of 3N SRCs

Formation mechanism will lead to different structures:

Fomin, Higinbotham, Sargsian, Solvignon, Ann.Rev.Nucl.Part.Sci. 67 129 (2017) Day, Frankfurt, Sargsian, Strikman, arXiv:1803.07629 (2018)

SRC properties are consistent acrc

Proton-proton pairing probability

Figure credit: Andrew Denniston

 $A \equiv$

Figure credit: Andrew Denniston

SRC pairing mechanism

N=28

New Hall C data : CaFe (e,e'p)

New Hall C data : CaFe (e,e'p)

SRC pairing within the same shell

New Hall C data : CaFe (e,e'p)

New data from RGM: (e,e'pp), (e,e'pn)

See Julian's talk

SRC properties: probing universal

Photo-production JLab Hall D (GlueX spectrometer)

Proton-Nucleus Scattering JINR/GSI (in inverse kinematics)

SRC properties: probing universal

Different probes for same observable and underlying physics: 12 C σ (c.m.) ~ 150 MeV/c in agreement with SRC model

Summary:

- High momentum nucleon $k > k_f$, predominantly belong to SRC pair.
- SRC properties are universal cross nuclei, with high p_{rel} and lower p_{cm}
- Narrow transition from MF to SRC
- SRC are predominantly np pairs, due to tensor force
- Transition from tensor to scalar
- Light nuclei measurement validates the model up to high momentum

(key) Open questions

<u>2N SRC</u>

- Scale dependence (Q²)
 - All observables
- Probe independence (e, p, γ)
 - Confirm factorization
- Pairing mechanisms
- Precision of interpretation in terms of ground state properties (theory)
- Neutron rich systems

<u>3N SRC</u>

- (e,e') high Q² x>2
- 3N KO (e,e'ppN)

Theory guidance:

- Kinematics
- Ground state
- Factorization
- Phenomenology

SRC white paper: Current contributors

