A Theory Overview of the Short-Baseline Program 15th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2025) Madison WI, June 9-13

Matheus Hostert <u>mhostert@g.harvard.edu</u> Neutrino Theory Network fellow @ Harvard University \rightarrow Assistant Prof. @ University of Iowa

ongin

Outline

1) Overview of current sterile neutrino oscillation landscape

2) Towards stronger and more robust statements about steriles

3) Where dark sector interpretations are going: γ , $\gamma\gamma$, and e^+e^-

Near detector

Standard flavor oscillations ($\nu_{\mu} \rightarrow \nu_{e,\tau}$)

Far detector

	>
	>
	>
	►

Neutrino fluxes at MiniBooNE

Flavor composition (neutrino mode, focused π^+):

 $\nu_{\mu}: 93.6\%$ $\overline{\nu}_{\mu}: 5.86\%$ $\nu_{e}: 0.52\%$ $\overline{\nu}_{e}: 0.05\%$

Large sample of neutrino interactions to directly measure (flux \times cross sections).

Neutrino scattering events:

Neutrino experiments are, by const Really good at searching

 $N_{\rm nucleons} \sim 10^{30}$

ar detector	Standard flavor oscillations ($ u_{\mu} ightarrow u_{e, au}$)	Far detector	
			r 🛉 r
			" ►

Neutrino experiments are, by construction, sensitive to very rare phenomena.

Really good at searching for weaker-than-Weak effects.

Short-Baseline Neutrino Experiments

Short Baseline (SBL) experiments focus on rare phenomena with large fluxes and *relatively small* (100 t-scale vs 10 kt-scale) detectors

 $\frac{L}{E} \sim \frac{\mathcal{O}(100 \text{ m})}{\mathcal{O}(100 \text{ MeV})}$

Short-Baseline Neutrino Experiments

Short Baseline (SBL) experiments focus on rare phenomena with large fluxes and *relatively small* (100 t-scale vs 10 kt-scale) detectors

 $\frac{L}{E} \sim \frac{\mathcal{O}(100 \text{ m})}{\mathcal{O}(100 \text{ MeV})}$

Natural combination of energies and locations, but **historically** this region received extra attention because of various hints for

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ oscillation with $\Delta m_{41}^{2} \sim 1 \text{ eV}^{2}$

Short-Baseline Puzzle

"Pre-History" of Short-Baseline Experiments: Oscillations?

11

New generation 1993: LSND and tantalizing hints for oscillations

Water plug (more shielding)

Early 2000's: the low-energy MiniBooNE excess

Cherenkov detector

Is there conclusive evidence for a sterile neutrino?

M. Hostert

 ν_e disappearance: No convincing ν_e disappearance is observed (*Gallium anomaly)

See also analysis of global reactor data: J. M. Berryman, P. Coloma, P. Huber, T. Schwetz, A. Zhou, JHEP 02 (2022) 055

Is there conclusive evidence for a sterile neutrino?

Is there conclusive evidence for a sterile neutrino?

ν_e disappearance: No convincing ν_e disappearance is observed (*Gallium anomaly)

M. Hostert

See also analysis of global reactor data: J. M. Berryman, P. Coloma, P. Huber, T. Schwetz, A. Zhou, JHEP 02 (2022) 055

ν_{μ} disappearance

No convincing ν_{μ} disappearance either.

Is there conclusive evidence for a sterile neutrino?

u_{μ} disappearance

No convincing ν_{μ} disappearance either.

IceCube sees a small preference for sterile using matter effects. Mostly in tension with MINOS(+) and NOvA

Adapted from 10² Δm² (eV²) — 68% CL — 90% CL - 95% CL 10 — 99% CL — 3σ CL 10 4σ CL **KARMEN2** 90% CL ∆ m²₄₁ (eV²) Other limits from 80's 1⊨ 10⁻¹ LSND 90% CL 10⁻² LSND 99% CL 10^{-2} 10⁻³ 10⁻² 10⁻¹ 1 10^{-3 L} 10 $\sin^2 2\theta_{e\mu} = 4 |U_{e4}|^2 |U_{\mu4}|^2$

M. Hostert

Huge progress. Moved from 1% to 0.1%.

MiniBooNE and LSND stand as the most sensitive appearance experiments to date.

But still no coherent picture.

3+1 oscillations look highly unlikely, but no direct and robust test (yet).

Zooming in on the MiniBooNE low-energy excess (LEE)

Zooming in on the MiniBooNE low-energy excess (LEE) with MicroBooNE

LArTPC

Disentangling final states

Zooming in on the MiniBooNE low-energy excess (LEE) with MicroBooNE

Second generation of analysis came out early 2025:

Delta radiative: $1\gamma 1p$ arXiv:2502.05750

No excess 94.4% CL exclusion

"We then isolate a sub-sample of these events containing no visible protons, and observe 93±22(stat.)±35(syst.) data events above prediction, corresponding to just above 20 local significance, concentrated at shower energies below 600 MeV."

Coherent: $1\gamma 0p$ arXiv:2502.06091 Inclusive: $1\gamma X$ arXiv:2502.06064

No excess, but not sensitive to the required value to explain the LEE.

 2σ excess in subsample. Could be compatible with LEE.

Tantalizing hint for single photon excess? Keeping a close eye on this.

Zooming in on the MiniBooNE low-energy excess (LEE) with MicroBooNE The ν_{ρ} hypothesis (sterile neutrino oscillations)

$$\mathcal{V}_{\mu}$$
 \mathcal{V}_{4} \mathcal{V}_{4}
 $|U_{\mu4}|^2$ $|U_{e4}|^2$

C. A. Argüelles, I. Esteban, MH, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-Gonzalez

PRL 128, 241802.

MicroBooNE coll., PRL. 130 (2023) 1, 011801

eV sterile neutrinos 3+1 oscillations at accelerator experiments

For SBL experiments, 3+1 oscillations are described by 3-parameters:

$$\Delta m_{41}^2$$

$$\Delta m_{41}^2 \operatorname{vs} \sin^2 2\theta_{e\mu} \equiv 4 |U_{e4}|^2 |U_{\mu4}|^2$$

However, in statistical profiling, we lose information. comparing regions of preference of two experiments after profiling can be misleading.

$$U_{e4}|^2 |U_{\mu4}|^2$$

Limits on results usually profiled onto the 2D space of

The "usual" plane shown for 3+1 models

O. Benevides Rodrigues, M. Hostert, K. J. Kelly, B. Littlejohn, P. A. N. Machado, I. Safa, Tao Zhou (Texas A&M) arXiv:2503.13594

At LSND, we do not need to account for disappearance.

At BNB, disappearance does impact backgrounds.

Need full 3-parameter, 3+1 model.

25

The "usual" plane shown for 3+1 models

O. Benevides Rodrigues, M. Hostert, K. J. Kelly, B. Littlejohn, P. A. N. Machado, I. Safa, Tao Zhou (Texas A&M) arXiv:2503.13594

In this 2D profiled plane, the sensitivities look much worse.

Consequence of the degeneracy between appearance and disappearance.

However, sensitivity loss is artificial and a result of the profiling method.

https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1132-PUB.pdf

O. Benevides Rodrigues, M. Hostert, K. J. Kelly, B. Littlejohn, P. A. N. Machado, I. Safa, Tao Zhou (Texas A&M) <u>arXiv:2503.13594</u>

Corresponds to a huge amount of ν_{ρ} disappearance

$$|U_{e4}|^2 \simeq 0.16 \to P_{\nu_e \to \nu_e} \sim 46\%$$

In practice, all of the parameter space where the app vs dis degeneracy matters is already excluded by other experiments

O. Benevides Rodrigues, M. Hostert, K. J. Kelly, B. Littlejohn, P. A. N. Machado, I. Safa, Tao Zhou (Texas A&M) <u>arXiv:2503.13594</u>

Including external constraint from final PROSPECT results

By forbidding ν_e disappearance, **PROSPECT** removes the degeneracy.

Slight deficit of ν_e at MicroBooNE then pushes constraints to be even stronger

Towards a robust test of sterile neutrinos Turning to slicing method instead

M. Hostert

VU RU Ess

O. Benevides Rodrigues, M. Hostert, K. J. Kelly, B. Littlejohn, P. A. N. Machado, I. Safa, Tao Zhou (Texas A&M) <u>arXiv:2503.13594</u>

Slice of 3D parameter space

Towards a robust test of sterile neutrinos Turning to slicing method instead

M. Hostert

VU RU Ess

O. Benevides Rodrigues, M. Hostert, K. J. Kelly, B. Littlejohn, P. A. N. Machado, I. Safa, Tao Zhou (Texas A&M) <u>arXiv:2503.13594</u>

Towards a robust test of sterile neutrinos Turning to slicing method instead — SBN (future)

SBN's 95% sensitivity covers the entire 4σ region of MiniBooNE in this slice.

O. Benevides Rodrigues, M. no. B. Littlejohn, P. A. N. Machado, I. C. Tao Zhou (Texas A&M) arXiv:2503.13594

Zooming in on the low-energy excess with MicroBooNE The remaining explanations

Dark Sectors in the MiniBooNE Low-Energy Excess Particle production inside the detector

Heavy neutrino decays:

- Single photons via transition magnetic moment ($X = \gamma$)
 - Di-leptons from dark photons or scalars ($X = e^+e^-$)
 - Di-photons from dark scalars ($X = \gamma \gamma$)

PI M. Hostert

- E. Bertuzzo et al, <u>Phys. Rev. Lett. 121, 241801 (2018)</u> P. Ballett et al, <u>Phys. Rev. D 99, 071701 (2019)</u>
- C. Argüelles, MH, Y. Tsai, <u>Phys. Rev. Lett. 123, 261801 (2019)</u>
 P. Ballett, MH, S. Pascoli, <u>Phys. Rev. D 101, 115025 (2020)</u>
 A. Abdullahi, MH, S. Pascoli, <u>Phys.Lett.B 820 136531 (2021)</u>

On **Quanta Magazine**:

Dark neutrino sectors Experimental signatures

First dedicated experimental search for neutrino-induced e^+e^- pairs:

MicroBooNE excludes minimal dark neutrino explanations to the MiniBooNE anomaly

M. Hostert

Signal: coherent scattering (no vertex) with subsequent $\nu_4 \rightarrow \nu e^+ e^-$ decays, targeting one or two showers in LArTPC.

MicroBooNE LArTPC

New-physics sources of $e^+e^- I \gamma \gamma I \gamma$

- 1) Models with wide angular distributions: scalars, axion-like-particle (ALP), or dipole portal HNL.
- 2) Models with hadronic vertices (spin-dependent interactions turn off coherent scattering).
- 3) More final states: multiple gammas, such as

s pion impostors,
$$N \rightarrow \nu \pi^0$$
 or $a \rightarrow \gamma \gamma$.

A.M. Abdullahi, J. Hoefken Zink, M. Hostert, D. Massaro, S. Pascoli arXiv:2308.02543

Topology	Model	Diagram	Signal
single γ	neutrino upscattering	ν <u>ν</u> γ	$N ightarrow \nu \gamma$
	neutrino-induced inverse-Primakoff scattering	v v v v v v v v	$\varphi^*A \to \gamma A$
e^+e^-	neutrino upscattering	vv	$N \rightarrow \nu e^+ e^-$ on-shell N
	neutrino-induced bremsstrahlung		$Z' \rightarrow e^+ e^-$ off-shell N
	neutrino-induced Primakoff scattering	ν <i>ν</i> <i>ν</i> <i>ν</i> <i>ν</i> <i>φ</i> <i>ε</i> ⁺ <i>ε</i> ⁺	$\varphi \rightarrow e^+ e^-$
	neutrino-induced inverse-Primakoff scattering	ν γ γ γ γ γ γ γ γ γ γ γ γ γ	$Z' \to e^+ e^-$
$\gamma\gamma$	neutrino upscattering	ν φ φ	$N \rightarrow \nu \gamma \gamma$
	neutrino-induced Primakoff scattering	ν <i>z</i> γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	$\varphi \to \gamma \gamma$

Constrained (indirectly)

Not directly searched for, but indirectly targeted by MicroBooNE single photon analyses. Can they explain the excess? **Direct searches would be very interesting.**

Constrained (directly)

MicroBooNE's e^+e^- excludes most of these, but not clear what happens in scalar mediator models where the angular distribution is wider.

Constrained (indirectly)

Anomaly-mediated photon production and similar diagrams. Challenging model-building.

See recent study: B. Dutta, A. Karthikeyan, D. Kim, A. Thompson, R. G. Van de Water, arXiv:2504.08071

Not constrained

We can call these "**pion impostors**". Two photons with $m_{\gamma\gamma} \neq m_{\pi^0}$ and different kinematics. Messes with the sidebands...

Summary

- New progress in understanding of short-baseline anomalies: 1) New data has excluded several interpretations in SM and beyond, but no resolution just yet.
- 3+1 oscillations of eV sterile neutrinos continues to be disfavored: 2) interpretation of MiniBooNE at about >2 σ .

Collaborations can show results without profiling to make stronger (and consistent) statements.

Put first searches for e^+e^- at MicroBooNE in context: 3)

Dark neutrino models with dark photon upscattering excluded, but upscattering with large hadronic activity and wide angular distributions not necessarily so. Can be interesting for **inclusive** 1γ excess.

Thank you for listening!

Matheus Hostert (<u>matheus-hostert@uiowa.edu</u>)

Demonstrated how current MicroBooNE limits actually already largely cover the entire sterile-

Back-up slides

Some history — SBL neutrino oscillations

Short-baseline oscillations have been discussed for a long time — even before we figured out the resolution to the Solar problem.

<u>PS-191 (1984 at CERN)</u> Phys.Lett.B 181 (1986) 173-177

A total of 23 ± 8 excess events (3σ) .

PS191 detector moved to BNL, behind E734.

E-816 (1986 at BNL) Nucl.Phys.B 335 (1990) 517-545

Reports a 2σ excess.

$$\frac{\left(\nu_e/\nu_{\mu}\right)_{\text{obs}}}{\left(\nu_e/\nu_{\mu}\right)_{\text{pred}}} = 2.2 \pm 0.6$$

Excess attributed to unknown systematics in both experiments.

LSND: 1993 - 1998

Phys.Rev.D 64 (2001) 112007

- 800 MeV proton beam, 1.8e23 POT. 1)
- π DAR and DIF:12° nu/p beam angle. 2)
- π^- contamination: $\bar{\nu}_e/\bar{\nu}_\mu \sim 8 \times 10^{-4}$ 3)
- Baseline of 30 m 4)
- ~167 tonnes of liquid scintillator 5)
- 8.3 m long detector. 6)

Excess: $87.9 \pm 22.4 \pm 6$ events 3.8σ significance

oscillation?

LSND & KARMEN

KARMEN: 1990 - 2001

Phys.Rev.D 65 (2002) 112001

π DAR source

- 800 MeV proton beam, 6e22 POT. 1)
- π mostly DAR. Detector 90° from p beam. 2)
- π^{-} contamination: $\bar{\nu}_{e}/\bar{\nu}_{\mu} = 6.4 \cdot 10^{-4}$ 3)
- Baseline of 17.7 m 4)
- ~57 tonnes of liquid scintillator 5)
- 6) 3.5 m long detector.

 $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$

More data was needed

No excess observed, but could not exclude LSND results.

MicroBooNE strategy has been to eliminate the degeneracy: second beam w/ different flavor composition.

(b) NuMI reconstructed neutrino energy

Towards a Robust Exclusion of the Sterile-Neutrino Explanation of Short-Baseline Anomalies

Ohana Benevides Rodrigues, Matheus Hostert, Kevin J. Kelly, Bryce Littlejohn, Pedro A. N. Machado, Ibrahim Safa, Tao Zhou

https://arxiv.org/abs/2503.13594

The "standard" way to look at the parameter space

For **LSND**, appearance-only oscillations is a good approximation.

For **BNB**, disappearance impacts sidebands and backgrounds. Need full 3-parameter, 3+1 model.

*	J. Kopp, P. Machado, M. Maltoni, T. Schwetz (briefly mentione arxiv.org/abs/1303.3011
*	M/ Dentler, I. Esteban, J. Kopp, P. Machado (pheno fit in the apper <u>arxiv.org/abs/1911.01427</u>
*	C. A. Argüelles, I. Esteban, MH, K. J. Kelly, J. Kopp, P. A. N. Macha Martinez-Soler, and Y. F. Perez-Gonzalez PRL 128, 241802.
*	MiniBooNE itself only actually used this model in 2022: arxiv.org/abs/2201.01724
*	MicroBooNE coll., PRL. 130 (2023) 1, 011801
*	M. Hostert, K. Kelly, T. Zhou: <u>arxiv.org/abs/2406.04401</u> (This is the pheno fit we use here, see our appendix)

Constrain the $\overline{\nu}_{\rho}$ composition of the BNB flux with LAr.

N. Kamp, M. Hostert, C. Argüelles, J. Conrad, M. Shaevitz. PRD107, 092002 (2023)

Not easy, but could be a novel search.

No very convincing reason why such a flux would be so high (in SM or BSM), but

have we ever checked that the $\overline{\nu}_e$ ontamination of the beam is as small as we think it is?

Long-lived particles from NuMI *target* (not absorber)

Y. Ema, P. J. Fox, M. Hostert, T. Menzo, M. Pospelov, A. Ray, J. Zupan, In preparation

Experiment	p^+ Energy	Exposure	$\tau/{ m POT}$	Baseline	Fiducial Volu
MicroBooNE	120 GeV (NuMI)	$2\cdot 10^{21}\mathrm{POT}$	$5 \cdot 10^{-7}$	685 m (8°)	2.26 · 2.0 ·9.42 m

Non-starting $\mu^+\mu^-$ would prob be the

Long-lived particles from NuMI *target* (not absorber)

Y. Ema, P. J. Fox, M. Hostert, T. Menzo, M. Pospelov, A. Ray, J. Zupan, In preparation

Experiment	p^+ Energy	Exposure	$\tau/{ m POT}$	Baseline	Fiducial Volu
MicroBooNE	120 GeV (NuMI)	$2\cdot 10^{21}\mathrm{POT}$	$5 \cdot 10^{-7}$	685 m (8°)	2.26 · 2.0 ·9.42 m

 ℓ_2^-

Dark neutrino sectors at MiniBooNE The nature of the mediator matters

Dark neutrino sectors at MiniBooNE A comprehensive fit to dark photon models

M. Hostert

Not a sensitivity plot! Just benchmarking the rate.

