

Results from SNO+

Logan Lebanowski for the SNO+ collaboration

Conference on the Intersection of Particle and Nuclear Physics 2025 Madison, Wisconsin

June 9, 2025

SNOLAB

SNO+ is a multipurpose neutrino experiment in SNOLAB.

OWLEDGE

CREUSER POUR TROUVER... L'EXCELLENCE

SNOLAB is located 2 km underground in an active mine in Sudbury, Canada.

SNO+

Acrylic vessel (radius 6 m)

9394 PMTs

2.5-m buffer (water)

SNO+

Primary goal:

Search for the lepton flavor-violating process of $0\nu\beta\beta$ using Te-loaded liquid scintillator.

• Novel LS approach is readily up-scaled.

Also measuring:

- solar v (interactions with ¹³C),
- reactor v oscillations,
- geo v flux,
- & watching for supernova v.

SNO+ scintillators

SNO+ has characterized the detector and backgrounds prior to loading tellurium.

Mass	0.78 ktons
Scintillator	LAB + PPO (2.2 g/L) + BHT (5.5 mg/L) + bis-MSB (2.2 mg/L) + {Te(0.5%)-ButaneDiol + DDA(0.2%)}
Radiopurity (no Te)	²³⁸ U: 4×10^{-17} g/g, ²³² Th: 5×10^{-17} g/g
Energy Resolution	6.5% @ 1 MeV
Position Resolution	12 cm in <i>x,y,z</i> @ 2.5 MeV
Overburden	2.0 km (~70 µ/day)

SNO+ scintillators

SNO+ has characterized the detector and backgrounds prior to loading tellurium.

Te-loading

Te acid purification (UG) Commissioned

BD purification (UG) Commissioned

DDA distillation (surface) Commissioned

Te-BD synthesis (UG) Commissioning

Detector (UG)

$0\nu\beta\beta$ search with 0.5% Te

SNO+ will look for $0\nu\beta\beta$ events at the endpoint of the double beta decay spectrum.

Backgrounds ROI: 2.42-2.56 MeV [-0.5σ - 1.5σ], 3.3 m FV, 9.47 counts/yr.

$0\nu\beta\beta$ sensitivities

Initial 0.5% Te

A 5-year counting analysis of 1330 kg of ¹³⁰Te yields $T^{0v}_{1/2} > 2 \times 10^{26}$ yr (90% C.L.).

Later 1.5% Te

A 5-year counting analysis of 4000 kg of ¹³⁰Te yields $T^{0v}_{1/2} > 7.4 \times 10^{26}$ yr (90% C.L.).

R&D has shown that Te loading can be increased.

⁸B solar neutrinos on ¹³C

Flux and spectrum are studied with elastic scattering, $v_e + e^-$. A CC interaction on ¹³C is also possible, but not yet observed.

[Borexino]

Prospects: ¹³C abundance is 1.1% while cross section is O(10) times larger. Delayed coincidence of e^{-} and e^{+} helps suppress backgrounds, though $\tau_{1/2} = 10.0$ min. Expect 17 CC interactions per year in SNO+.

⁸B solar neutrinos on ¹³C

Prompt e^- energy = $E_v - 2.2$ MeV Selecting events above 5 MeV leaves ⁸B elastic scatters as the sole background to prompt events. **Delayed** e^+ plus 1.0-MeV annihilation γ energy: [1.01, 2.20] MeV. Background dominated by ²¹⁰Bi below 1.2 MeV.

Box Cuts	Prompt	Delayed	
E (MeV)	5.0-15	1.14-2.20	
<i>R</i> (m)	0-5.3	0-5.3	
Δr (m)	0-0.36		
Δt (min)	0.01-24		

A likelihood ratio is also built with these parameters.

12

⁸B solar neutrinos on ¹³C

Cosmogenic backgrounds are small at SNOLAB's great depth.

With 225 days of data, 4 signal-like coincidences were observed.

LAB + PPO (2.2 g/L)

Antineutrinos at SNO+

Detected using inverse beta decay (IBD) on H:

 $\overline{\nu}_e + p \to e^+ + n$

- Prompt energy spectrum closely follows the E_{y} .
- Delayed energy spectrum is a 2.2-MeV γ peak.

Sources

- Reactor
- Geo

Backgrounds

- (α, n) reactions
- ²¹⁴BiPo-like (*new observation*)
- Accidentals from ambient radio.
- Atmospheric neutrinos
- Muon-induced
 - Fast n
 - β -*n* decays

	²¹⁴ BiPo		Reactor- $\overline{\nu}$ IBD	
	Prompt	Delayed	Prompt	Delayed
$\frac{E (MeV)}{R (m)}$	1.25-3.0 0-4.0	0.7-1.1 0-4.0	0.9-9.0 0-5.7	1.85-2.5 0-5.7
$\begin{array}{c} \Delta r \ (\mathrm{m}) \\ \Delta t \ (\mu \mathrm{s}) \end{array}$	0-1.0 3.7-1000		0-2.5 0-2000	

Sources

The nearest reactors are the Bruce complex, 240 km away, one of the largest & most powerful sets.

• The average distance traveled by detectable reactor neutrinos is about 620 km.

Reactor power information is publicly available for cores across the world.

(Anti)neutrino oscillation

The probability that an electron (anti)neutrino does not oscillate into another flavor depends on

- oscillation angles θ_{ii}
- difference between mass-squares Δm^2_{ii}
- distance traveled *L*
- energy of the neutrino E_{y}

$$P_{ee} = 1 - \frac{\cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}}{-\sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})}$$

 $\Delta_{ij} \equiv 1.267 \Delta m_{ij}^2 L/E_{\nu}$

Approximately 100 reactor- ν IBDs are expected within the AV per year. And about 25 geo- ν IBDs per year. The matter effect is taken into account and found to induce a change in the flux of O(1%) or less.

(α, n) background

The (α, n) background originates from the naturally occurring ²¹⁰Po α -decays in which the α particles interact with ¹³C in the scintillator.

The ¹³C(α , *n*)¹⁶O reaction produces three distinct energy peaks.

Fitting the prompt energy spectrum produces uncertainties smaller than the initial constraints \Rightarrow SNO+ expects to make useful measurements of the ¹³C(α , *n*)¹⁶O reaction.

(α, n) background

The (α, n) background originates from the naturally occurring ²¹⁰Po α -decays in which the α particles interact with ¹³C in the scintillator.

The ¹³C(α , *n*)¹⁶O reaction produces three distinct energy peaks.

Fitting the prompt energy spectrum produces uncertainties smaller than the initial constraints \Rightarrow SNO+ expects to make useful measurements of the ¹³C(α , *n*)¹⁶O reaction.

²¹⁴BiPo-like background

- An excess of coincidences is observed with delayed event energies just below the 2.2-MeV ROI. The Δt, Δr, & prompt *E* distributions are consistent with ²¹⁴BiPo β-α decays.
- These tails are suspected to arise from α -*p* elastic scatters. More scintillation is produced than by α 's alone due to lesser quenching of *p*'s. Rare α + γ decays are too low in *E* & rate to create excess.
- A data-driven model of the ²¹⁴Po energy spectrum is created using a kernel density estimation of the ²¹⁵Po energy distribution and fitted to the ²¹⁴Po distribution.

LAB + PPO (2.2 g/L)

Spectral analysis

- Second-most precise measurement of $\Delta m_{21}^2 = (7.96^{+0.48}) \times 10^{-5} \text{ eV}^2.$
 - Tension between solar and reactor Δm_{21}^2 , after combining SNO+ & KamLAND, slightly > 1.50.
 - With ~3 years of data, SNO+ will provide a measurement as precise as KamLAND (~2%).

• First measurement of geo-nu IBD rate in the Western hemisphere (3rd ever): 73⁺⁴⁷₋₄₃ TNU.

Summary

SNO+ is preparing to load Te into liquid scintillator.

SNO+ is characterizing the detector & backgrounds, and studying neutrinos. Using LAB + PPO (2.2 g/L) data:

- First observation of solar neutrino CC interactions on ¹³C, owing to the low cosmogenic backgrounds at SNOLAB.
- Second-most precise measurement of Δm_{21}^2 .
- Third measurement of the geo-neutrino flux, first in the Western hemisphere.
- First identification of a ²¹⁴BiPo-like background (suspected α -*p*) that can be important for past & future IBD measurements.
- Watching for a supernova.

All measurements are improving with additional data.

$2\nu\beta\beta$ decay in scintillator

Need a $2\nu\beta\beta$ -decay isotope with a favorable Q-value.

Reactor antineutrinos

Reactors are a highly intense and pure source of electron antineutrinos (anti- v_e). $\approx 2 \times 10^{20} \text{ s}^{-1} \text{ GW}^{-1}$.

Four primary fissile isotopes (235 U, 239 Pu, 238 U, 241 Pu) produce neutron-rich daughters that undergo β decay, yielding about six anti- v_e per fission.

Their energy spectra are reasonably well understood and are continuing to be measured with increasing accuracy.

Reactor IBDs at SNO+

About **39%** of IBDs originate from Bruce **(240 km)** and **18%** from two other Canadian complexes at **340** and **350 km**.

