Fermion Portal Dark Matter at a Muon Collider

Pouya Asadi

pasadi@uoregon.edu

University of Oregon \rightarrow UC Santa Cruz

Based on : 2312.03826, 2412.14235 With : Samuel Homiller, Aria Radick, Tien-Tien Yu

Talk Presented @ CIPANP 2025

June 11, 2025

- High energy and clean,
- EW gauge boson collider,
- Colliding 2nd gen. particle.

- High energy and clean,
- EW gauge boson collider,
- Colliding 2nd gen. particle.
- Great luminosity-energy scaling: the way of the future!

- High energy and clean,
- EW gauge boson collider,
- Colliding 2nd gen. particle.
- Great luminosity-energy scaling: the way of the future!

- High energy and clean,
- EW gauge boson collider,
- Colliding 2nd gen. particle.
- Great luminosity-energy scaling: the way of the future!

Trove of discussions: KITP workshop 2023.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Freeze-in Fermion	Portals		

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Froozo in Formion	Portala		

f	Q	u	d	e	L
SM Charges	(3,2,1/6)	(3,1,2/3)	(3,1,-1/3)	(1 , 1 ,-1)	(1,2,-1/2)

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Fronzo in Formion	Portala		

f	Q	u	d	e	L
SM Charges	(3,2,1/6)	(3,1,2/3)	(3,1,-1/3)	(1,1,-1)	(1,2,-1/2)

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Free	eze-in Fermior	Portals		

f	Q	u	d	e	L
SM Charges	(3,2,1/6)	(3,1,2/3)	(3,1,-1/3)	(1,1,-1)	(1,2,-1/2)

• Will study look for ϕ_f in the freeze-in limit at a 10 TeV MuC.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Free	eze-in Fermion	Portals		

f	Q	u	d	e	L
SM Charges	(3,2,1/6)	(3,1,2/3)	(3,1,-1/3)	(1,1,-1)	(1,2,-1/2)

- Will study look for ϕ_f in the freeze-in limit at a 10 TeV MuC.
- Motivated dark matter model

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Free	eze-in Fermion	Portals		

f	Q	u	d	e	L
SM Charges	(3,2,1/6)	(3,1,2/3)	(3,1,-1/3)	(1,1,-1)	(1,2,-1/2)

- Will study look for ϕ_f in the freeze-in limit at a 10 TeV MuC.
- Motivated dark matter model
 → Informing benchmark specs for the detector.

 $\mathcal{L} \supset \lambda \phi_f f^{\dagger} \chi + h.c.$

• SuperWIMP:

- SuperWIMP:
 - ϕ_f freezes out via gauge interactions. Decays to dark matter χ .

- SuperWIMP:
 - ϕ_f freezes out via gauge interactions. Decays to dark matter χ .
 - Overclosure \rightarrow an upper-bound on dark matter mass.

- SuperWIMP:
 - ϕ_f freezes out via gauge interactions. Decays to dark matter χ .
 - Overclosure \rightarrow an upper-bound on dark matter mass.

- SuperWIMP:
 - ϕ_f freezes out via gauge interactions. Decays to dark matter χ .
 - Over closure \rightarrow an upper-bound on dark matter mass.
- Lower bound on χ mass (astro.) \rightarrow completely bounded space.

- SuperWIMP:
 - ϕ_f freezes out via gauge interactions. Decays to dark matter χ .
 - Over closure \rightarrow an upper-bound on dark matter mass.
- Lower bound on χ mass (astro.) \rightarrow completely bounded space.
- Direct freeze-in supplements the abundance.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Prompt or Lon	g-Lived		
		*			

• The mediator can be long-lived: $\lambda \ll 1$.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Prompt or Lon	g-Lived		

• The mediator can be long-lived: $\lambda \ll 1$.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Executive Su	mmary		

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Executive Su	mmary		

Develop a cut-and-count analysis to look for ϕ -mediator, which can serve as a benchmark target for a MuC.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Executive Su	mmary		
			-		

Develop a cut-and-count analysis to look for ϕ -mediator, which can serve as a benchmark target for a MuC.

The μ parton PDF should be included for an accurate calculation of the reach.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up

Topology	$e \mod$	L model	$u \bmod el$	$Q \mod$
¢	$\phi_e \to e \chi$	$\begin{array}{c} \phi^0_L \rightarrow \nu \chi \\ \phi^L \rightarrow \ell^- \chi \end{array}$	$\phi_u \to u \chi$	$\begin{array}{c} \phi_Q^{2/3} \rightarrow u\chi \\ \phi_Q^{-1/3} \rightarrow d\chi \end{array}$
φ ₁		$\phi^L \to \phi^0_L \ell^- \bar{\nu}$		$\phi_Q^{2/3} \rightarrow \phi_Q^{-1/3} e^+ \nu_e$
h h	$\mu\mu ightarrow \phi_e \phi_e$	$\begin{array}{l} \mu\mu \rightarrow \phi_L^+\phi_L^- \\ \mu\mu \rightarrow \phi_L^0\phi_L^0 \end{array}$	$\mu\mu\to\phi_u\phi_u$	$\begin{array}{c} \mu\mu \rightarrow \phi_Q^{2/3} \phi_Q^{-2/3} \\ \mu\mu \rightarrow \phi_Q^{1/3} \phi_Q^{-1/3} \end{array}$
Vi	$VV \rightarrow \phi_e \phi_e$	$ \begin{array}{l} VV \rightarrow \phi^+_L \phi^L \\ VV \rightarrow \phi^0_L \phi^0_L \\ VV \rightarrow \phi^0_L \phi^\pm_L \end{array} $	$VV ightarrow \phi_u \phi_u$	$ \begin{array}{c} VV \to \phi_Q^{2/3} \phi_Q^{-2/3} \\ VV \to \phi_Q^{1/3} \phi_Q^{-1/3} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} $

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up

Topology	$e \mod$	L model	$u \bmod e$	$Q \mod$
,	$\phi_e \to e \chi$	$\begin{array}{c} \phi^0_L \rightarrow \nu \chi \\ \phi^L \rightarrow \ell^- \chi \end{array}$	$\phi_u \to u \chi$	$\phi_Q^{2/3} ightarrow u\chi \ \phi_Q^{-1/3} ightarrow d\chi$
φ ₁		$\phi^L \to \phi^0_L \ell^- \bar{\nu}$		$\phi_Q^{2/3} \rightarrow \phi_Q^{-1/3} e^+ \nu_e$
h h h h h h h h h h h h h h h h h h h	$\mu\mu ightarrow \phi_e \phi_e$	$\begin{array}{l} \mu\mu \rightarrow \phi_L^+\phi_L^- \\ \mu\mu \rightarrow \phi_L^0\phi_L^0 \end{array}$	$\mu\mu\to\phi_u\phi_u$	$\begin{array}{l} \mu\mu\rightarrow\phi_Q^{2/3}\phi_Q^{-2/3}\\ \mu\mu\rightarrow\phi_Q^{1/3}\phi_Q^{-1/3} \end{array}$
Vi	$VV \to \phi_e \phi_e$	$ \begin{array}{l} VV \rightarrow \phi^+_L \phi^L \\ VV \rightarrow \phi^0_L \phi^0_L \\ VV \rightarrow \phi^0_L \phi^\pm_L \end{array} $	$VV \to \phi_u \phi_u$	$ \begin{array}{c} VV \to \phi_Q^{2/3} \phi_Q^{-2/3} \\ VV \to \phi_Q^{1/3} \phi_Q^{-1/3} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} $

Signal: dijet/dilepton + MET

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up

Topology	$e \mod$	L model	$u \bmod el$	$Q \mod$
ø	$\phi_e \to e \chi$	$\begin{array}{c} \phi^0_L \rightarrow \nu \chi \\ \phi^L \rightarrow \ell^- \chi \end{array}$	$\phi_u \rightarrow u \chi$	$\begin{array}{c} \phi_Q^{2/3} \to u\chi \\ \phi_Q^{-1/3} \to d\chi \end{array}$
φ ₁		$\phi^L \to \phi^0_L \ell^- \bar{\nu}$		$\phi_Q^{2/3} \rightarrow \phi_Q^{-1/3} e^+ \nu_e$
h h h h h h h h h h h h h h h h h h h	$\mu\mu ightarrow \phi_e \phi_e$	$\begin{array}{l} \mu\mu \rightarrow \phi_L^+\phi_L^- \\ \mu\mu \rightarrow \phi_L^0\phi_L^0 \end{array}$	$\mu\mu ightarrow \phi_u \phi_u$	$\begin{array}{l} \mu\mu\rightarrow\phi_Q^{2/3}\phi_Q^{-2/3}\\ \mu\mu\rightarrow\phi_Q^{1/3}\phi_Q^{-1/3} \end{array}$
Vi	$VV \to \phi_e \phi_e$	$\begin{array}{l} VV \rightarrow \phi^+_L \phi^L \\ VV \rightarrow \phi^0_L \phi^0_L \\ VV \rightarrow \phi^0_L \phi^\pm_L \end{array}$	$VV ightarrow \phi_u \phi_u$	$ \begin{array}{l} VV \to \phi_Q^{2/3} \phi_Q^{-2/3} \\ VV \to \phi_Q^{1/3} \phi_Q^{-1/3} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} $
μ) <u>v</u>	f ₁ μ f ₂ f ₃	V μ/ν f_1 f_2
	$f_4 \mu /$		∕ _{f4} μ	έ μ/ν

Signal: dijet/dilepton + MET

Topology	$e \mod$	L model	$u \bmod el$	$Q \operatorname{model}$
ø	$\phi_e \to e \chi$	$\begin{array}{c} \phi^0_L \rightarrow \nu \chi \\ \phi^L \rightarrow \ell^- \chi \end{array}$	$\phi_u \rightarrow u \chi$	$\begin{array}{c} \phi_Q^{2/3} \rightarrow u\chi \\ \phi_Q^{-1/3} \rightarrow d\chi \end{array}$
*1		$\phi^L \to \phi^0_L \ell^- \bar{\nu}$		$\phi_Q^{2/3} \rightarrow \phi_Q^{-1/3} e^+ \nu_e$
h h h h h h h h h h h h h h h h h h h	$\mu\mu ightarrow \phi_e \phi_e$	$\begin{array}{l} \mu\mu \rightarrow \phi_L^+\phi_L^- \\ \mu\mu \rightarrow \phi_L^0\phi_L^0 \end{array}$	$\mu\mu ightarrow \phi_u \phi_u$	$\begin{array}{c} \mu\mu \rightarrow \phi_Q^{2/3}\phi_Q^{-2/3} \\ \mu\mu \rightarrow \phi_Q^{1/3}\phi_Q^{-1/3} \end{array}$
V1	$VV \to \phi_e \phi_e$	$\begin{array}{l} VV \rightarrow \phi^+_L \phi^L \\ VV \rightarrow \phi^0_L \phi^0_L \\ VV \rightarrow \phi^0_L \phi^\pm_L \end{array}$	$VV ightarrow \phi_u \phi_u$	$ \begin{array}{c} VV \to \phi_Q^{2/3} \phi_Q^{-2/3} \\ VV \to \phi_Q^{1/3} \phi_Q^{-1/3} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} $
μ	f_{1} μ f_{2} μ f_{3} f_{4} μ) <u>v</u>	f_1 μ	V f_1 f_2 μ/ν

Signal: dijet/dilepton + MET

Cut Variable	Background
$m_{\ell\ell,jj}$	ZZ
M_{T2}	WW
$ heta_{\ell\ell,jj}$	\mathbf{FSR}
$E_{\ell,j}$	VBF
$\eta_{\ell,j}$	all

Topology	$e \mod$	L model	$u \mod l$	$Q \mod$
,	$\phi_e \to e \chi$	$\begin{array}{c} \phi^0_L \rightarrow \nu \chi \\ \phi^L \rightarrow \ell^- \chi \end{array}$	$\phi_u \to u\chi$	$\phi_Q^{2/3} ightarrow u\chi \ \phi_Q^{-1/3} ightarrow d\chi$
о,		$\phi^L \to \phi^0_L \ell^- \bar{\nu}$		$\phi_Q^{2/3} \rightarrow \phi_Q^{-1/3} e^+ \nu_e$
h h h h h h h h h h h h h h h h h h h	$\mu\mu ightarrow \phi_e \phi_e$	$\begin{array}{l} \mu\mu \rightarrow \phi_L^+\phi_L^- \\ \mu\mu \rightarrow \phi_L^0\phi_L^0 \end{array}$	$\mu\mu ightarrow \phi_u \phi_u$	$\begin{array}{l} \mu\mu\rightarrow\phi_Q^{2/3}\phi_Q^{-2/3}\\ \mu\mu\rightarrow\phi_Q^{1/3}\phi_Q^{-1/3} \end{array}$
Vi	$VV \to \phi_e \phi_e$	$ \begin{array}{l} VV \rightarrow \phi^+_L \phi^L \\ VV \rightarrow \phi^0_L \phi^0_L \\ VV \rightarrow \phi^0_L \phi^\pm_L \end{array} $	$VV ightarrow \phi_u \phi_u$	$ \begin{array}{c} VV \to \phi_Q^{2/3} \phi_Q^{-2/3} \\ VV \to \phi_Q^{1/3} \phi_Q^{-1/3} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} \\ VV \to \phi_Q^{2/3} \phi_Q^{1/3} \end{array} $
μ	f_{1} μ f_{2} μ f_{3} f_{4} μ	Junium	$f_1 \qquad \mu$	V μ/ν f_1 f_2 ν μ/ν

Signal: dijet/dilepton + MET

Cut Variable	Background
$m_{\ell\ell,jj}$	ZZ
M_{T2}	WW
$ heta_{\ell\ell,jj}$	\mathbf{FSR}
$E_{\ell,j}$	VBF
$\eta_{\ell,j}$	all

Effective reduction of bkg.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	0::6				

- Upto large masses discoverable.
- Large sys. tolerable.

- Upto large masses discoverable.
- Large sys. tolerable.
- Why not the entire kinematically accessible region?

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Muon Parto	ו PDF		

• Muons have a non-trivial PDF themselves. Diverges at $x \to 1$.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Muon Parto	ו PDF		

- Muons have a non-trivial PDF themselves. Diverges at $x \to 1$.
- Implemented: divide it into a delta function at x = 1 and the function for x < 1.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Muon Partor	ו PDF		

- Muons have a non-trivial PDF themselves. Diverges at $x \to 1$.
- Implemented: divide it into a delta function at x = 1 and the function for x < 1.
- Has substantial effects on the event distribution.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Muon Parto	ו PDF		

- Muons have a non-trivial PDF themselves. Diverges at $x \to 1$.
- Implemented: divide it into a delta function at x = 1 and the function for x < 1.
- Has substantial effects on the event distribution.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Fffe	oct of Muon P	arton PDF		

• Including the PDF diffuses the signals cluster - detrimental in a fishing expedition!

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Effec	t of Muon P	arton PDF		

• Including the PDF diffuses the signals cluster - detrimental in a fishing expedition!

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Effec	t of Muon P	arton PDF		

• Including the PDF diffuses the signals cluster - detrimental in a fishing expedition!

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	$\Sigma \mathcal{G}_{-}$	- f M D			
	Effect	t of Muon Pa	arton PDF		

- Including the PDF diffuses the signals cluster detrimental in a fishing expedition!
- It will diminish the mass reach.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Ffoot	t of Muon D	Parton DDF		
	Effect	t of Muon F	аптоп Г Д Г		

- Including the PDF diffuses the signals cluster detrimental in a fishing expedition!
- It will diminish the mass reach.
- Include the μ parton PDF in your analyses!

Intro. Fermion Portal - Freeze-in Prompt Signals Interlude: µPDF Summary Back Up Effect of Muon Parton PDF

- Including the PDF diffuses the signals cluster detrimental in a fishing expedition!
- It will diminish the mass reach.
- Include the μ parton PDF in your analyses!

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Summar	V		

Search for fermion portal dark matter at a MuC. $\mathcal{O}(100\%)$ sys. tolerable.

μ parton PDF ought to be included for viable predictions.

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Summai	'V		

Search for fermion portal dark matter at a MuC. $\mathcal{O}(100\%)$ sys. tolerable.

μ parton PDF ought to be included for viable predictions.

THANK YOU!

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Back up)		

- Evidence For DM
- Exact Cuts

- Event Distribution Histograms
- μ PDF Implementation
- LLP Signal Yields

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		H'rridongo to			

Takender for T

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
		Exact C	uts		

Leptons

$$\begin{cases} m_{\ell\ell} \ge 300 \text{ GeV}, \theta_{\ell\ell} \ge \frac{8\pi}{9}, |\eta_{\ell}| \le 0.3, M_{T2} \ge 150 \text{ GeV}, E_{\ell} \ge 600 \text{ GeV} \end{cases} \\ \begin{cases} m_{\ell\ell} \ge 300 \text{ GeV}, \theta_{\ell\ell} \ge \frac{13\pi}{18}, |\eta_{\ell}| \le 0.2, M_{T2} \ge 800 \text{ GeV}, E_{\ell} \ge 1800 \text{ GeV} \end{cases} \\ \\ \text{Quarks} \end{cases}$$

$$\left\{ m_{jj} \ge 3600 \text{ GeV}, \theta_{jj} \ge \frac{7\pi}{9}, |\eta_j| \le 0.5, M_{T2} \ge 400 \text{ GeV}, E_j \ge 900 \text{ GeV} \right\}$$
$$\left\{ m_{jj} \ge 1500 \text{ GeV}, \theta_{jj} \ge \frac{\pi}{4}, |\eta_j| \le 0.7, M_{T2} \ge 1600 \text{ GeV}, E_j \ge 1600 \text{ GeV} \right\}$$

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	тт	11 • T 1			

Hurdles in Implementing PDFs

- Chirality matters!
- Interference PDFs (γ, Z, H) .
- μ PDF itself (integrable divergence at $x \to 1$).

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
	Imple	menting the <i>u</i>	Parton PDF		
	1111110	μ			

• Each muon helicity is separately implemented as an LHAPDF file.

•
$$f_{\mu}(x,Q^2) \equiv \tilde{f}_{\mu}(x,Q^2) + c_{\mu}(Q^2)\delta(1-x).$$

- $c_{L/R,\mu}(Q^2)$: determined from sum rules for (i) the total muon number and (ii) the total polarization (left/right).
- $c_{\mu}(Q^2)$ varies with Q^2 .
- 2 polarization \times (x = 1 or x < 1) per beam: 8 runs.

$$\begin{aligned} \frac{\mathrm{d}\mathcal{L}_{\mu^{+}\mu^{-}}}{\mathrm{d}\tau} &= \int_{\tau}^{1} \frac{\mathrm{d}x}{x} f_{\mu^{+}}(x, Q_{f}) f_{\mu^{-}}(\tau/x, Q_{f}) \\ &= \frac{\mathrm{d}\tilde{\mathcal{L}}_{\mu^{+}\mu^{-}}}{\mathrm{d}\tau} + c_{\mu^{+}} c_{\mu^{-}} \delta(1-\tau) + c_{\mu^{+}} \tilde{f}_{\mu^{-}}(\tau) + c_{\mu^{-}} \tilde{f}_{\mu^{+}}(\tau), \end{aligned}$$

Intro.	Fermion Portal - Freeze-in	Prompt Signals	Interlude: μPDF	Summary	Back Up
			-		
		LLP Sign	als		

- VBF or μ : Two production channels with different kinematics
- SM bkg is reducible, e.g. by arriving timing data.

- Remaining bkg: detector response. Requires extensive GEANT4 simulation.
- Displaced lepton/jet signal yield reported in each detector component.

Intro. Fermion Portal - Freeze-in Prompt Signals Interlude: µPDF Summary Back Up LLP Signals

• Max $\mathcal{O}(1000)$ events. Especially heavy stable charged particles or R-hadron.

