Overview of Long-baseline Neutrino Oscillations Experiments

> Zoya Vallari June 9, 2025 zoya@physics.osu.edu

INTERSECTIONS – CIPANP 2025

Neutrino Oscillation

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

Flavor Eigenstates (interactions)

Leptonic Mixing Matrix

Mass Eigenstates (propagation)

Quantum superposition of neutrino mass eigenstates leads to neutrino oscillation.

Neutrino Oscillation

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

Flavor Eigenstates (interactions)

Leptonic Mixing Matrix

Mass Eigenstates (propagation)

Quantum superposition of neutrino mass eigenstates leads to neutrino oscillation.

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \underbrace{\sum_{i \text{ Amplitude}}^{\text{Frequency}} e^{-i \underbrace{\frac{m_{i}^{2} L}{2E}}_{i} U_{\beta i}} \right|^{2}$$

L (baseline), E (Energy)

Experiments are designed with a typical L/E and neutrino source, to optimize sensitivity to particular Δm_{ij}^2 scales

Neutrino Oscillation

• Two known mass-splitting scales ($|\Delta m_{31}^2| \sim 2 \times 10^{-3} \text{ eV}^2$, $\Delta m_{21}^2 \sim 7 \times 10^{-5} \text{ eV}^2$) determine which oscillations the experiments can probe.

Source	L(m)	E (MeV)	∆m² (eV²)
Solar	10 ¹⁰	1	10 ⁻¹⁰
Atmospheric	10 ⁴ – 10 ⁷	10 ² -10 ⁵	10 ⁻¹ – 10 ⁻⁴
Reactor SBL	10 ² – 10 ³	1	10 ⁻² -10 ⁻³
Reactor LBL	10 ⁴ – 10 ⁵	1	10 ⁻⁴ –10 ⁻⁵
Accelerator SBL	10 ²	10 ³ –10 ⁴	> 0.1
Accelerator LBL	10 ⁵ -10 ⁶	10 ³ –10 ⁴	10 ⁻² –10 ⁻³

Adapted from annurev-nucl-102020-101615

SBL : Short Baseline (< 1km)

LBL : Long Baseline (10 - 1000 km)

This Session

PMNS Parameterization

 Widely used representation of the Leptonic Mixing Matrix, assumes unitarity and is adopted across all neutrino oscillation experiments.

$$U_{\rm PMNS} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad c_{ij} = \cos\theta_{ij}$$
Measured primarily from the following neutrino sources
$$Atmospheric \qquad Accelerator \\ \theta_{23} \sim 45^{\circ} \\ \Delta m_{32}^{2} \sim \pm 2.5 \times 10^{-3}eV^{2} \end{bmatrix} \quad Accelerator / Reactor \\ Accelerator & \theta_{23} \sim 45^{\circ} \\ \Delta m_{12}^{2} \sim 7.5 \times 10^{-5}eV^{2} \end{bmatrix}$$

June 09, 2025

A 25 years long odyssey 0.8 Snowmass NF01 report Denton et al arXiv:2212.00809

See <u>Peter Denton's</u> <u>talk on Thursday!</u>

"Ultimate Goal: Not Measure Parameters but Test the Formalism" - André de Gouvêa

Is the θ_{23} mixing maximal?

Current Measured Value : $heta_{23} \sim 45^\circ$ Precision : $\sin^2 \theta_{23} \sim 5\%$

 $\begin{array}{c}
\nu_{3} \\
\bullet \nu_{e} \\
\bullet \nu_{\mu} \\
\bullet \nu_{\tau}
\end{array}$

Values from PDG 2020

PMNS Matrix

Values from NuFIT 5.0, arXiV:2007.14792

If $\theta_{23} = 45^{\circ} \rightarrow |U_{\mu 3}| = |U_{\tau 3}|$

Zoya Vallari

Is CP violated in leptons?

credit. <u>Ar 5/ carin cann</u>

Do neutrinos and anti-neutrinos oscillate differently violating the CP symmetry? Is sin $\delta_{CP} = 0$?

Values from PDG 2020

Values from NuFIT 5.0, arXiV:2007.14792

Zoya Vallari

Implications for $\mathbf{0}_{\mathbf{V}}\beta\beta$, cosmology

Which neutrino is the lightest?

Long-baseline experiments

v_{μ} disappearance channel

ν_e appearance channel

Complicated dependence on multiple parameters of interest.

- Opposite impact of matter effect and δ_{CP} for ν_e vs $\overline{\nu}_e$ appearance probability.

June 09, 2025

3 Generations of long-baseline oscillation experiments

3 Generations of long-baseline oscillation experiments

	Previous Gene MINOS K2K OPE	ration T	Current Gene	eration Next	Generation DEEP UNDERGROUND NEUTRINO EXPERIMENT Camiokande
	20	010	2020) 2030) lapted from annurey-nucl-102020-101615
	Location	Beam	Baseline	Near Detector	Far Detector
T2K	Japan (Tokai to Kamioka)	J-PARC 500 kW (Upgrade to 1.3 MW)	295 km	Suite of detectors, on-and off- axis	Water Cherenkov , 22.5 kt fiducial, off-axis
NOvA	United States (Fermilab to Ash River, Minnesota)	NuMI 850 kW	810 km	Segmented liquid scint., off- axis	Segmented liquid scint . 14kt active, off-axis
lyper-K	Japan (Tokai to Kamioka)	J-PARC 1.3 MW	295 km	Suite of detectors, on-and off- axis, intermediate movable Water Cherenkov detector	Water Cherenkov , 187 kt fiducial, off-axis
DUNE	United States (Fermilab to Lead, South Dakota)	LBNF 2 – 2.4 MW tunable	1285 km	Liquid argon time projection chamber + suite of detectors, on-axis, movable off-axis	Liquid argon time projection chamber , 40kt fiducial, on-axis

June 09, 2025

Recent Results from NOvA and T2K

15

T2K

Why NOvA-T2K joint fit?

- Complementarity:
 - Power to break degeneracies.
- Full implementations:
 - Energy reconstruction and detector response
 - Detailed likelihood
 - Consistent statistical inferences across the full dimensionality
- In-depth reviews:
 - Different analysis approaches driven by contrasting detector designs
 - Models, systematic uncertainties and possible correlations

Results from NOvA and T2K from 2020 datasets

Feb 18, 2025

Complementarity

- Different neutrino fluxes:
 - detectors see qualitative different v-interactions.
- Different baselines:
 - NOvA sees larger matter effect due to higher neutrino energy
 - → higher sensitivity to mass ordering.

%

→Ve

P{v_µ

 Therefore, associated asymmetry is higher for the longer baseline.

Complementarity

- T2K measurements isolate impact of CP violation while NOvA has significant sensitivity to mass ordering.
- Joint analysis probes both spaces lifting degeneracies of individual experiments.

June 09, 2025

Detectors

- Near Detector (ND) provides valuable in-situ cancelation and constraints on:
 - neutrino flux
 - cross-section, and
 - detector uncertainties
- T2K employs different detector technologies for Near and Far detectors (FD).
- NOvA's ND and FD are functionally identical segmented liquid scintillator detectors.

June 09, 2025

Systematics

NOvA and T2K use very different strategies to incorporate ND Data but with very similar impact on oscillation measurements.

T2K: Uncertainty on FD 1e-like ring v_e event rate goes from ~13% to ~5% after applying constraints from ND data fit

NOvA: Systematic uncertainties in the FD v_e candidate from ~15% to ~4%

June 09, 2025

Systematics & their correlations in the joint fit

- Flux and Detector Systematics: No significant correlations across experiments
- Cross-section Systematics: No direct mapping between the cross-section systematics parameters
 - Exception: Uncertainties in v_e / v_μ and $\overline{v}_e / \overline{v}_\mu$ cross-section have identical origin^{*} and similar treatment
 - Fully correlated in the joint fit.

Systematics & their correlations in the joint fit

- Cross-section Systematics: No direct mapping between the cross-section systematics parameters
- Strategy: Explore a range of artificially crafted scenarios to bracket the impact
- Example: Fabricated systematics comparable to statistical uncertainty, with correlated bias in both experiments.
 - Uncorrelated and correctly correlated cases show negligible differences, while incorrectly correlating systematics shows a bias.
- Based on such studies → No additional correlations need be applied given current experimental exposures

Merits continued investigations for higher data exposures and progress towards a unified framework for cross-section modeling in future experiments!

Robustness to alternate models

- Evaluate the robustness by fitting simulated fake data generated with various alternate models
 - Example: Suppression in single pion channel based on the tune to the MINERvA data*
- No alternate model tests failed the preset threshold bias criteria.

June 09, 2025

Dataset and its compatibility

- 2020-era dataset from both experiments used for the joint-fit.
- Posterior predictive p-values (PPP)* of 0.75 obtained for the joint fit
- The data from both experiments is described well by the joint fit.

Channel	NOvA	Т2К
ν_e	82	94 (ν _e) 14 (ν _e 1π)
$\overline{ u}_e$	33	16
$oldsymbol{ u}_{\mu}$	211	318
$\overline{oldsymbol{ u}}_{\mu}$	105	137

*Gelman, Meng and Stern, Stat. Sinica 6, 733 (1996)

June 09, 2025

θ_{23} and θ_{13}

• Degeneracy in $\sin^2 \theta_{23}$ and $\sin^2 2\theta_{13}$ parameters for long-baseline measurements.

With reactor θ_{13} constraint

Mass Ordering

- NOvA-T2K joint fit has a modest preference for the Inverted Ordering, whereas individual experiments prefer Normal Ordering.
- The joint-fit enhances the precision of Δm_{32}^2 over individual experiments.

2.07 4.24	1 36
Bayes factor Advised ~33% posterior ~81% : ~19% posterior	Inverted/Normal ~58% : ~42% posterior

Mass Ordering

- Enhanced precision in Δm_{32}^2 presents another lever on measuring neutrino mass-ordering.
 - Under wrong ν MO, reactor and long-baseline Δm_{32}^2 measurements will disagree*
- Including Daya Bay's Δm_{32}^2 , reverses the **preference back to the Normal Ordering**.
- No significant preference for either mass ordering in the joint analysis.

28

CP Violation

*Note: Jarlskog plot assumes inverted ordering; left plot shows posterior marginalized over both MO simultaneously. Conclusions hold for both marginalizations.

• Regardless of the mass orderings, $\delta_{CP} = \pi/2$ lies outside 3-sigma credible interval.

- If the ordering is inverted, CP conserving values of δ_{CP} (0, π) and Jarlskog invariant J_{CP}
 - = 0 lie outside the 3-sigma credible interval.
 - For priors that are both uniform in δ_{CP} and uniform in sin δ_{CP}

Future Directions

These experiments are designed to study **accelerator**, **astrophysical**, **solar and atmospheric neutrinos** and **probe SM**, **BSM**, **exotic and dark matter** physics.

June 09, 2025

- DUNE has an unrivaled sensitivity to resolve MO for any values of other oscillation parameters.
- HK has excellent sensitivity to CP violation but has a degeneracy between CP violation and MO due to its short baseline.
 - Recover CPV sensitivity with Atmospheric v's or if MO already known through DUNE/JUNO.

 Both Hyper-K and DUNE offer unprecedented precision on Δm_{32}^2 , $\delta_{\rm CP}$, θ_{23} with multiple years of running.

37

See <u>Roberto Mandujano's</u>

Zoya Vallari, OSU

- JUNO is currently filling and scheduled to start taking data ~this year.
- 3σ sensitivity to Mass Ordering after ~6 years of data-taking.
- Most precise measurements of half of the neutrino oscillation parameters in 100 days.
- Ultimately, an order of magnitude improvement over current knowledge of Δm_{32}^2 , Δm_{21}^2 , and $\sin^2 2\theta_{12}$.

Sidebar: JUNO

Summary:

- NOvA and T2K continue to produce exciting results, together and independently.
 - Current generation experiments remain statistically limited.
- Recent slate of results deliver excellent precision on Δm_{32}^2 .
- Small preference for upper octant when adding the θ_{13} constraint from reactor, but all results are **consistent with the maximal mixing**.
- NOvA + T2K joint fit demonstrates compatibility of datasets.
 - Mass ordering preference remains insignificant: mild preference for inverted ordering which switches to normal ordering when including Δm_{32}^2 from Daya Bay.
 - This fit excludes, CP conservation at 3σ , if the mass ordering is inverted.
- Future neutrino oscillation experiments will unambiguously determine the mass ordering and probe for leptonic CV violation with highly enhanced sensitivities.

Outlook:

- Neutrino physics is entering the precision era, putting the three-flavor neutrino paradigm to the test.
- With the next-generation experiments, we can robustly measure the neutrino sector -- or reveal anomalies!

June 09, 2025

Thank you!

Image credit: Fermilab