Searching for neutrinoless double decay with the **nEXO** experiment

Lin Si, On behalf of the nEXO collaboration 6/10/2025, CIPANP, Madison

CIPANP Madison

Outline

- Neutrinoless Double Beta Decay
- nEXO Experiment
- SiPM array studies in Lxe
- ASIC testing for charge readout

Neutrinoless Double Beta Decay

- Confirm Neutrino Majorana Nature
 Detect neutrinoless double beta decay (0vββ) to prove neutrinos are their own antiparticles.
- Probe Lepton Number Violation & Matter Dominance

 $0\nu\beta\beta$ (ΔL = 2) could explain the observed matter-antimatter asymmetry in the Universe.

Neutrino Mass

If $0\nu\beta\beta$ is observed, effective neutrino mass can be constrained to the ~10meV scale

Neutrinoless Double Beta Decay

Candidate	Q(MeV)
⁴⁸ Ca→ ⁴⁸ Ti	4.271
⁷⁶ Ge→ ⁷⁶ Se	2.040
⁸² Se→ ⁸² Kr	2.995
⁹⁶ Zr→ ⁹⁶ Mo	3.350
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802
¹²⁴ Sn→ ¹²⁴ Te	2.228
¹³⁰ Te→ ¹³⁰ Xe	2.533
¹³⁶ Xe→ ¹³⁶ Ba	2.458
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367

Multiple experiment with different isotopes

- Q-value and phase space
- Half-life
- Nuclear matrix element
- Experimental practical challenges

Motivations for using multiple isotopes

- Enable different detection techniques
- Mitigate risks from unknown γ transitions
- Distinct 2vββ backgrounds
- Nuclear matrix elements are uncertain and model-dependent

Isotope of choice for nEXO: ¹³⁶Xe

- High Q value: 2.4578 MeV
- Few radioactive backgrounds
- Noble element: good detector material

nEXO Collaboration

nEXO Experiment

Next-gen $0v\beta\beta$ detector

- Single phase Time Projection Chamber(TPC) with 1.3 m drift length
- 5 tonnes of liquid xenon enriched to 90% in ¹³⁶Xe
- Underground at SNOLAB, Large overburden 2 km
- Active water veto outer detector

Signal Detection in nEXO TPC

anode

- Signal: mono-energetic peak at Q-value
- Better energy resolution → better signal-background separation
- Energy reconstructed using combined charge and light
- EXO-200 achieved significant improvement with rotation
- nEXO target resolution: 0.8% at Q-value

Single-site vs. multi-site discrimination

- **Ονββ signal: single-site energy deposition**
- γ backgrounds: often produce multi-site scattering
- Segmented anode: 3 mm pitch cross strips
- Allows identification of spatially separated deposits
- Improves signal–background separation

Projected Sensitivity of nEXO

- nEXO is a discovery experiment, which will search for 0vββ with half-life sensitivity approximately 2 orders of magnitude beyond existing experiments
- If observed, nEXO will provide compelling evidence of a discovery:

Measures multiple parameters, fully homogeneous, can replace ¹³⁶Xe with ^{nat}Xe for a control experiment CIPANP Madison 12

Instrumentation R&D

Ionization charge

- Gridles segmented • modular tiles (charge tiles)
- Top of the detector •

Scintillation light

- Silicon Photomultipliers • (SiPMs)
- Barrel of TPC •

Light Signal

4.6 m² of Silicon Photomultipliers (SiPMs)

~46,000 1cm × 1 cm VUV sensitive SiPMs 7680 channels

SiPM $1 \times 1 \text{ cm}^2$

ASICs tile

Photon detection system

SiPM Modules: Each SiPM is 1 cm × 1 cm **light Tiles**: Each tile contains 96 SiPMs

stave **Stave assembly**: 20 tiles form one stave

Full photon detection system :24 staves around the TPC barrel

Light Signal

Stanford TPC installation(R&D with 24 SiPMs) early measurements and study how the array behaves in LXe

SiPMs array (use different preamp for nEXO)

Multiple SiPM candidates are meeting nEXO requirements

Gallina, G., et al. "Performance of Novel VUV-Sensitive Silicon Photo-Multipliers for nEXO." The European Physical Journal C 82, no. 12 (December 13, 2022): 1125

properties under investigation in R&D:

- dark rate
- photodetection efficiency
- correlated avalanches
- overvoltage/temperature dependence

Light Signal

Stave test chamber McGill:

- All hardware for 30 cm x 60 cm area cryogenic prototype stave test in place.
- Assembly progressing well.
- First vacuum end of Feb. 2025
- First cooldown May 2025
- First SiPM tile test August 2025

Signal Detection in nEXO TPC

Ionization charge

- Gridles segmented modular tiles (charge tiles)
- Top of the detector

Scintillation light

- Silicon Photomultipliers (SiPMs)
- Barrel of TPC

Charge Signal

nEXO full assembly of the charge readout: 120 tiles

Modular Charge Tile Structure

- Each tile: 10 cm × 10 cm
- X and Y strips for 2D charge reconstruction
- Each strip: 16 squares for charge collection

the charge tile will first be tested externally with dedicated electronics to validate its performance

Charge Tile Testing Setup with External Electronics

Charge Signal

Charge integrating analog circuits have noise contributors often dominated by **capacitance** of the collecting electrode

- Long cabling introduces a lot of capacitance
- Place the amplifier/digitizer as close to the electrode as possible

nEXO has strict **radiopurity** requirements and assays every material that goes into the detector

• ~3840 channels implies lots of cable mass if every channel gets a cable up to the surface

Prototype Module at Stanford Lab Full Module Connected to Flange

Amplifier & Digitizer Directly Connected to Modular Charge Tiles

Next step

nEXO requires 120 charge tiles how multiple tiles behave together

- Wide TPC can accommodate four charge tiles
- Key study areas:

Multi-tile testing Large SiPM array performance Cross-talk between tiles Energy resolution improvements

• Technical Specs:

Drift length: 13cm Inner diameter: 35.25 cm Total mass: 64 kg xenon

Wide TPC capable of holding four charge tiles

Experimental setup for multiple tile

Conclusion

nEXO is a next-generation experiment designed to search for neutrinoless double beta decay in **5 tonnes of enriched liquid xenon**.

It features a **fully homogeneous detector**, measuring energy, position, and topology of every event.

nEXO aims for a **half-life sensitivity beyond 10²⁸ years**, with **ultra-low background and multi-dimensional analysis**.

Our R&D focuses on:

- SiPM-based light detection
- Charge readout tiles (low-noise ASICs, integrated electronics)
- A 64-kg LXe test TPC to validate full system integration and performance

Thank you