Recent Results from KamLAND-Zen and Future Prospects

Dr. Omer Penek on behalf of the KamLAND-Zen Collaboration

15th Conference on the Intersections of Particle and Nuclear Physics CIPANP Madison, Wisconsin, June 9th 2025

Boston University College of Arts & Sciences / Physics openek@bu.edu

PMT housing

Diamonds

Acrylic Plates

> KamLS Balloon (Outer Balloon)

Kevlar Rope System

-3-

Contents

- Motivation: $0\nu\beta\beta$ and KamLAND-Zen
- From Event Selection to Spectral Analysis
- KamLAND2-Zen
- Summary / Outlook

Ettore Majorana

Teoria simmetrica dell'elettrone e del positrone (A symmetric theory of electrons and positrons). Il Nuo vo Cimento, 14 : 17–184, 1937.

It follows from the above assumptions that in vacuum a neutrino can be transformed into an antineutrino and vice versa. This means that the neutrino and antineutrino are "mixed" particles, i.e., a symmetric and antisymmetric combination of two truly neutral Majorana particles ν_1 and ν_2 of different combined parity.⁵

0νββ

Bruno Pontocorvo Majorana

Inverse beta processes and nonconservation of lepton charge Zhur. Eksptl[•]. I Teoret. Fiz. 34, 247 (1958)
→ Lepton Number Violation

Candidates ->

Ettore Majorana

Teoria simmetrica dell'elettrone e del positrone (A symmetric theory of electrons and positrons). Il Nuo vo Cimento, 14 : 17 –184, 1937.

It follows from the above assumptions that in vacuum a neutrino can be transformed into an antineutrino and vice versa. This means that the neutrino and antineutrino are "mixed" particles, i.e., a symmetric and antisymmetric combination of two truly neutral Majorana particles ν_1 and ν_2 of different combined parity.⁵

2.0

1.5-

1.0

0.5

0.0-

0.0

0.2

0.4

0νββ

Bruno Pontocorvo Majorana

Inverse beta processes and nonconservation of lepton charge Zhur. Eksptl[•]. I Teoret. Fiz. 34, 247 (1958)
→ Lepton Number Violation

Spectra ->

30

0.90 1.00 1.10

K_/Q

1.0

0.8

9 20 410 × 10

0.6

K_/Q

KamLAND-Zen...

KamLAND-LS

1 kton LS = 80V% of normal dodecane + 20V% pseudocumene + 1.36g/l PPO (2,5-diphenyloxazole) fluor

Cherenkov Detector

3.2 kton Water for Muon Veto

 $Q_{\beta\beta}(^{136}{
m Xe}) = 2.458 {
m MeV}$

Net Light Yield = 250 p.e./MeV

PMTs = 1325 17-inch and 554 20-inch

Resolutions:

Energy ~ $6.7\%/\sqrt{E[MeV]}$, Vertex ~ $13.7 \text{ cm}/\sqrt{E[MeV]}$

Analysis Range = [0.5,4.8] MeV and R<2.5 m (Fiducial Volume)

Publications + Phases

KamLAND-Zen 400: Oct. 12 2011 - Oct. 27 2015 Phase I: PRL 110,(2013) 062502 Phase II: PRL 117.8 (2016): 082503 Excited states: Nuc. Ph. A 946 (2016): 171-181

KamLAND-Zen 800: Feb. 5 2019 to Jan. 12 2024 Phys. Rev. Lett. 130.5 (2023): 051801

KamLAND-Zen 800 Final Physics Run: Aug. 27th 2024

Complete KLZ 800 Dataset arXiv:2406.11438v1 (2024)

- FV R<2.5 m + hot spot + deadtime
- μs and $\mu s + \Delta t < 2$ ms
- Bi-Po's by delayed coincidence tag (prompt Bi + delayed Po, double pulse) (Δt, Δr) < (1.9 ms, 1.7m)

- FV R<2.5 m + hot spot + deadtime
- μs and $\mu s + \Delta t < 2$ ms
- Bi-Po's by delayed coincidence tag (prompt Bi + delayed Po, double pulse) (Δt, Δr) < (1.9 ms, 1.7m)
- Reactor v veto: delayed coincidence of positrons and n-capture gammas

- FV R<2.5 m + hot spot + deadtime
- μ s and μ s + Δt < 2 ms
- Bi-Po's by delayed coincidence tag (prompt Bi + delayed Po, double pulse) (Δt, Δr) < (1.9 ms, 1.7m)
- Reactor ν veto: delayed coincidence of positrons and n-capture gammas
- Bad reco events are removed (vertextime-charge discrimination with inefficiency <0.1%)

ROI 2.35 < E [MeV] < 2.70

Exposure and Long-Lived (LL) Sep.

- Long-Lived Data (LD): classified as LL bkgs i.e. muon spallation products with τ ≥ 0(100s), ε_{LD} ~ 10%
 ⇔ 111 Days
- Singles Data (SD): not classified as long-lived bkgs, ε_{SD} ~ 90%
 ⇔ 1131 Days

Data is divided into two exposure fractions optimized wrt Long Lived Spallation Backgrounds
 Simultaneous Spectral Fit is done on these Datasets

KamLAND-Zen Event Selection Cuts Exposure

Exposure and Long-Lived (LL) Sep.

- Long-Lived Data (LD): classified as LL bkgs i.e. muon spallation products with τ ≥ 0(100s), ε_{LD} ~ 10%
 ⇔ 111 Days
- Singles Data (SD): not classified as long-lived bkgs, ε_{SD} ~ 90%
 ⇔ 1131 Days

Total Xe Exposure in KLZ-800 reached 2.097 ton x year

• Solar Neutrino Interactions (ES+CC)

- Solar Neutrino Interactions (ES+CC)
- Cosmogenics Xenon Spallation Products

- Solar Neutrino Interactions (ES+CC)
- Cosmogenics Xenon Spallation Products
- Cosmogenics Carbon spallation Products

- Solar Neutrino Interactions (ES+CC)
- Cosmogenics Xenon Spallation Products
- Cosmogenics Carbon spallation Products
- Internal XeLS Radioactive Impurities (RI)

- Solar Neutrino Interactions (ES+CC)
- Cosmogenics Xenon Spallation Products
- Cosmogenics Carbon spallation Products
- Internal XeLS Radioactive Impurities (RI)
- External to XeLS from IB + KamLAND-LS

- Solar Neutrino Interactions (ES+CC)
- Cosmogenics Xenon Spallation Products
- Cosmogenics Carbon spallation Products
- Internal XeLS Radioactive Impurities (RI)
- External to XeLS from IB + KamLAND-LS
- ¹³⁶Xe $2\nu\beta\beta$ (source bkg)

- Solar Neutrino Interactions (ES+CC)
- Cosmogenics Xenon Spallation Products
- Cosmogenics Carbon spallation Products
- Internal XeLS Radioactive Impurities (RI)
- External to XeLS from IB + KamLAND-LS
- ¹³⁶Xe $2\nu\beta\beta$ (source bkg)
- ¹³⁶Xe $0\nu\beta\beta$ (90% Limit)

Bayesian Approach

Multivariate Spectral Analysis

→ No Signal Observed on Data ⇔ Calculate Limits based on toy Monte Carlo

Multivariate Spectral Analysis

→ No Signal Observed on Data ⇔ Calculate Limits based on toy Monte Carlo

Pseudo Dataset: Take Best Estimation of Backgrounds with Zero injected Signal (Null)

Frequentist	Bayesian
Evaluate Log-Likelihood-Ratio test statistics	Evaluate Posterior Distribution and
for different Hypothesis wrt Null and	calculate 90 % limit (credibility)
calculate 90 % limit (confidence)	31

Results

Results

 $T_{FC}(\text{KLZ}_{800}) > T_{Wilks}(\text{KLZ}_{400+800}) > T_{Wilks}(\text{KLZ}_{800}) \approx T_{Bayes}(\text{KLZ}_{800})$

$$\left(T_{0.5}^{0\nu 2\beta}\right)^{-1} = G^{0\nu} |M^{0\nu}|^2 m_{\beta\beta}^2$$

 $\left(T_{0.5}^{0\nu2\beta}\right)^{-1} = G^{0\nu}|M^{0\nu}|^2m_{\beta\beta}^2$

Ref. $M^{0\nu}$ $\langle m_{\beta\beta} \rangle$ (meV) [34] 2.28, 2.45 59.4, 55.3
[34] 2.28, 2.45 59.4, 55.3
11 1 1
[35] 1.63, 1.76 83.1, 77.0
[36, 37] 2.39 56.7
[38] 1.55 87.4
[39] 2.91 46.6
[40] 2.71 50.0
[41] 1.11, 1.18 122, 115
[42] 3.38 40.1
[43] 4.20 32.3
F theory [44] 4.77 28.4
[45] 4.24 32.0
[46] 3.25 41.7
[47] 3.40 39.9

 $\langle m_{\beta\beta} \rangle < 28 ... 122 \text{ meV}$

...KamLAND2-Zen...

Com	ponents	Formula	Density	[g/cm³] Volum	ne ratio
	LAB	$C_n H_{2n-6}$	0.86	80%	
	PC	$\mathrm{C}_{9}\mathrm{H}_{12}$	0.875	20%	
	PPO	$\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{NO}$	-	$2.00\mathrm{g/L}$	
	Bis-MSB	$\mathrm{C}_{24}\mathrm{H}_{22}$	-	$5\mathrm{mg/L}$	
	LAB-LS	_	0.865	_	

Wavelength[nm]

Electronics Upgrade

16-channel prototype for KamLAND2-Zen •

Goal

State of the Art Electronics **MoGURA2** Boards DAQ via RFSoC = Radio Frequency System-on-Chip

- Improve background suppression
- Tagging long lived isotopes from cosmic ray spallation
- Improve neutron 🖙 Long-Lived tagging efficiency
- Low noise front end to extract smaller pulses
 - \succ Improve E resolution and extract fainter pulses (α near IB)
- Embedded AI for Advanced and Dynamic Triggering
 - Pulse extraction on-chip
 - Streaming DAQ (zero deadtime)

Other Upgrades

- Aiming for 1000 kg of Enriched Xenon \rightarrow RND
- Improved Inner Balloon
 - Reduce Backgrounds originating from Balloon
 - Limited s/b ratio due to ²¹⁴Bi contamination

Tag ²¹⁴Bi decays.

Sensitivity

- Cover IO region
- Target Mass Sensitivity: $\langle m_{etaeta}
 angle \sim 20$ meV / 5 years
- Half Life Sensitivity / 5 years: $T > 2 \times 10^{27}$ years

DAQ Start
$$\rightarrow$$
 2028

Ongoing Constructions

Mock-up

Outlook

• KamLAND-Zen hunting for 10²⁷ years

• Most stringent mass: $\langle m_{\beta\beta} \rangle < 28 \dots 122 \text{ meV}$

Outlook

 KamLAND-Zen hunting for 10²⁷ years

• Most stringent mass: $\langle m_{\beta\beta} \rangle < 28 \dots 122 \text{ meV}$

Thank You

KamLAND2-Zen

... will be unleashed soon

 \rightarrow 2028

Pokemon Center, Shibuya, Tokyo

...Backup...

Matter-Antimatter-Asymmetry Baryogenesis through Leptogenesis

Matter-Antimatter-Asymmetry Baryogenesis through Leptogenesis

Why is m_{ν} light? (Seesaw)

Matter-Antimatter-Asymmetry Baryogenesis through Leptogenesis

Astroparticle Physics

Standard Model Cosmology ν mass hierarchy

Astroparticle Physics

Matter-Antimatter-Asymmetry Baryogenesis through Leptogenesis

Why is m_v light? (Seesaw)

Xe 320 kg

340 ka

Publications + Phases

KamLAND-Zen 400: Oct. 12 2011 - Oct. 27 2015 Phase I: PRL 110,(2013) 062502 Phase II: PRL 117.8 (2016): 082503 Excited states: Nuc. Ph. A 946 (2016): 171-181

KamLAND-Zen 800: Feb. 5 2019 to Jan. 12 2024 Phys. Rev. Lett. 130.5 (2023): 051801

KamLAND-Zen 800 Final Physics Run: Aug. 27th 2024

Complete KLZ 800 Dataset arXiv:2406.11438v1 (2024)

high scalability

745 kg largest ¹³⁶Xe !!

Ň		· ····································	• • •					l le lig	iai gest	
	20	11 2012	2012	2012	2013	2015 💊	2019			2024
	Oc	t. Feb.	Mar.	Jun.	Dec.	Oct.	Jan.			Jan.
KL-Z	en ' ed	DS-1	DS-2	2	Period-1 Period-2	2 IB constru	uction			
Otart	UU	Zen 400) Phase-l		Purification Zen 400 Phase-II			Zen 800		
Xe amo	ount	320 kg	340	kg	383 kg			745 kg		
Exposi	ure 🖁	54.9 kg-yr	34.6 kg	g-yr	493.5 kg-yr			2097 kg-yr		

383 kg

Short-Lived Spallation Products

Triple Coincidence Tagging

Shower Tagging

→ (dE/dX,dL) space correlation with muon shower

Energy Spectrumoverlap with ROI

 μ + ¹²C \rightarrow n + X + μ (X= ¹⁰C, ..) → (dT,dR) correlation with muons and neutrons (captured)

Rejection Efficiency of short-lived Carbon Spallation products: > 95 %

Short-Lived Spallation Products

TABLE VIII. Summary of carbon spallation production rate and neutron capture rate in the KamLAND-LS. A unit conversion factor is provided as $(\text{kton day})^{-1} = 7.69 \times 10^{-8} \text{ cm}^2/(\text{g}\,\mu)$. Spallation reactions were simulated for a KamLAND-LS cylinder and a Xe-LS cylinder, and the results are compared in the last column. For the precise estimation of ¹¹C β^+ decay, we require large statistics and the results from KamLAND is presented [34].

		$\tau_{1/2}$	Q (MeV)	$\mathcal{R}_{n-\mathrm{tag}}$	$\mathcal{R}_{ ext{isolated}}$	$\mathcal{R}_{ ext{Total}}^{ ext{Data}}$	$\mathcal{R}_{KamLAND-LS}^{FLUKA}$	$\mathcal{R}_{ ext{Xe-LS}}^{ ext{FLUKA}}/\mathcal{R}_{ ext{KamLAND-LS}}^{ ext{FLUKA}}$
10-2 =	⁸ He	119.1 ms	10.7 (β ⁻)	$0.5^{+1.1}_{-0.5}$	$0.3^{+0.5}_{-0.3}$	$0.8^{+1.2}_{-0.5}$	0.55 ± 0.04	0.96 ± 0.03
E	⁹ Li	178.3 ms	$13.6(\beta^{-})$	$2.5 \substack{+0.3 \\ -0.3}$	$0.1 \stackrel{+0.2}{_{-0.1}}$	$2.7 \substack{+0.3 \\ -0.4}$	4.9 ± 0.4	1.00 ± 0.01
0 0.5 1	$^{12}\mathbf{B}$	20.2 ms	$13.4 (\beta^{-})$	43 +3	$14.4 \substack{+0.6 \\ -0.08}$	58 ⁺³ ₋₂	42 ± 3	1.013 ± 0.003
	¹² N	11.0 ms	17.3 (β ⁺)	$0.8 \stackrel{+0.9}{_{-0.7}}$	$0.07 \stackrel{+0.2}{_{-0.06}}$	$0.9^{+0.9}_{-0.7}$	0.74 ± 0.06	1.02 ± 0.03
Energy	⁸ Li	839.9 ms	$16.0(\beta^{-})$	21 + 4 - 3	$0.9 \substack{+1.6 \\ -0.9}$	22 +4	47 ± 3	1.021 ± 0.004
	${}^{8}B$	770 ms	$18.0(\beta^+)$	3 +4	$0.8 \stackrel{+1.0}{_{-0.6}}$	4 +4 -3	11.0 ± 0.8	1.024 ± 0.008
	°C	126.5 ms	$16.5 (\beta^+)$	1 + 2 - 1	$0.2 \substack{+0.5 \\ -0.2}$	2^{+2}_{-1}	1.5 ± 0.1	1.02 ± 0.02
	¹¹ Be	13.8 s	11.5 (β ⁻)	$1.2^{+0.3}_{-0.2}$	0 ^{+0.06} -0	$1.2^{+0.3}_{-0.2}$	$1.09\ \pm 0.08$	1.02 ± 0.02
	¹⁰ C	19.29 s	3.65 (β ⁺)	19 +2	$0.5 \substack{+0.6 \\ -0.5}$	19^{+2}_{-2}	23 ± 2	1.029 ± 0.005
	⁶ He	806.7 ms	3.51 (β ⁻)	10^{+1}_{-1}	1^{+1}_{-1}	11^{+2}_{-1}	28 ± 2	1.022 ± 0.005
	¹¹ C	1221.8 s	$1.98 (\beta^+)$	-	-	973 ± 10 [34]	679 ± 49	1.012 ± 0.001
	n	207.5 µs	$2.223(\text{cap.}\gamma)$	-	-	3781 ± 296	4046 ± 292	1.1485 ± 0.0004

Spallation products: > 95 %

10 =

Ē

Intensity [a.u.]

55

relation

1000 800 600

1600 m

Long-lived Spallation Produts

TABLE IX. Simulated production rate of dominant isotopes in roducts Long-li

 $2.35 \leq E \leq 2.70$ MeV in Xe-LS.

