Mehr Un Nisa Michigan State University

<u>ABBBB</u>

CPANP 2025

Why Cosmic Neutrinos

Why Cosmic Neutrinos

 Probe a parameter space in particle physics (GeV-PeV) that is not accessible in other experiments (beam dump/ accelerators).

Why Cosmic Neutrinos

 Probe a parameter space in particle physics (GeV-PeV) that is not accessible in other experiments (beam dump/ accelerators).

 Observe the universe where it is opaque in other wavelengths.

50 m

IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW-Madison

1450 m

Digital Optical Module (DOM)

5,160 DOMs doployed in the ice 2450 m

detector

IceTop

╸╺┶╌╞╼╧╕*╄╶╄╶╄╺╄╼╪╼╪╼╄╶╄╶╊╺╋╼╞┙┿┙╱╋<mark>╞</mark>╊╓╅╼╪┙┿┙╔╻╏┨┨╗┿┙┙┙┙╡╡╞╺┠┶┶╡┙┙┙╽┙╡╞╺┝┿╍┿╍┿┙┙┙╸╸╸╸*

╸╺┶╌╞╼╧╕*╄╶╄╶╄╺╄╼╪╼╪╼╄╶╄╶╊╺╋╼╞┙┿┙╱╋<mark>╞</mark>╊╓╅╼╪┙┿┙╔╻╏┨┨╗┿┙┙┙┙╡╡╞╺┠┶┶╡┙┙┙╽┙╡╞╺┝┿╍┿╍┿┙┙┙╸╸╸╸*

Typical Event Signatures

Track-like

 u_{μ}

 v_e CC, v_x NC, low- $E v_\tau$

Data and Background

Atmospheric Muons

10¹¹/year

Cosmic Rays Data and Background

....

Cosmic Rays

Atmospheric Muons

10¹¹/year

10⁵/year Atmospheric

Data and Background

.

Cosmic Rays

Atmospheric Muons

10¹¹/year

10⁵/year Atmospheric eutrino

Data and Background

Astrophysical Neutrinos O(100)/year

The Neutrino Sky

+75 °

Where are they coming from?

Galaxy NGC 1068

Blazar TXS 0506 + 056 (

Where are they coming from?

$\mathcal V$ Astronomy

Recent PS Results (Ali Kheirandish)
Recent Diffuse Measurements (Vedant Basu)
Supernova Prospects (Segev BenZvi)
Galactic Plane Flavor Ratio (John Hardin)

Galaxy NGC 1068

Blazar TXS 0506 + 056 (

Where are they coming from?

${\cal V}$ Astronomy

Recent PS Results (Ali Kheirandish)
Recent Diffuse Measurements (Vedant Basu)
Supernova Prospects (Segev BenZvi)
Galactic Plane Flavor Ratio (John Hardin)

New Physics? IceCube 1781

Look for interactions between the "dark sector" and the Standard Model Signatures of new physics could show up in neutrinos'

Directions

Look for interactions between the "dark sector" and the Standard Model Signatures of new physics could show up in neutrinos'

Look for interactions between the "dark sector" and the Standard Model Signatures of new physics could show up in neutrinos'

Spectrum

Look for interactions between the "dark sector" and the Standard Model Signatures of new physics could show up in neutrinos'

IceCube Neutrinos Probing BSM Physics

Dark Matter

Search for Exotics

Neutrino Physics and anomalies

SM

X

SM

SM

X

SM

Gamma rays

SM

X

SM

Neutrinos

Gamma rays

SM

SM

X

Excluded

Neutrinos

Mχ (GeV)

Gamma rays

Astrophysical Targets

DM DM

Earth Sun Galactic Center Dwarf Galaxies Galactic Halo Diffuse Cosmological DM Galaxy Clusters

$$J_{\rm ANN} = \int_{\Omega} d\Omega \int_{l} \rho^2(r(\theta, \phi)) dl$$
 or

$$J_{\rm ANN} = \int_{\Omega} d\Omega \int_{l} \rho^2(r(\theta, \phi)) dl$$
 or

$$J_{\rm DEC} = \int_{\Omega} d\Omega \int_{l} \rho(r(\theta, \phi)) dl$$

$$J_{\rm ANN} = \int_{\Omega} d\Omega \int_{l} \rho^2(r(\theta, \phi)) dl$$
 or

$$J_{\rm DEC} = \int_{\Omega} d\Omega \int_{l} \rho(r(\theta, \phi)) dl$$

For dark matter density ρ in source at sky coord. (θ, ϕ) , seen of size Ω over line of sight *I*

$$J_{\rm ANN} = \int_{\Omega} d\Omega \int_{l} \rho^2(r(\theta, \phi)) dl$$
 or

$$J_{\rm DEC} = \int_{\Omega} d\Omega \int_{l} \rho(r(\theta, \phi)) dl$$

For dark matter density ρ in source at sky coord. (θ, ϕ) , seen of size Ω over line of sight *I*

$$\frac{d\phi_{\nu}}{dE_{\nu}} = \frac{\Gamma_{ann}}{4\pi d^2} \frac{dN_{\nu}}{dE_{\nu}}$$

Recent Results: DM Capture and Annihilation in Earth

Eur. Phys. J. C **85**, 490 (2025)

13

Recent Results: Sun

Orders of magnitude stronger than direct detection constraints for spin-dependent scattering

14

Dwarf Galaxies

LMC

c

SMC

Brandon Pries (MSU/GeorgiaTech)

Constraints from Dwarf Galaxies TeV-PeV DM

Ч S 2

Dan Salazar (MSU)

Constraints from Dwarf Galaxies TeV—PeV DM

Dan Salazar (MSU)

Galactic Center Ample DM content but source confusion for EM telescopes. Neutrino lines would be a smoking gun, background-free signal

Background image: ESO Central image: Fermi-LAT

Recent Results: Galactic Center

Phys. Rev. D 108, 102004

Looking Ahead: IceCube Upgrade

Looking Ahead: IceCube Upgrade

Looking Ahead: IceCube Upgrade

Signatures of new physics could show up in neutrino directions, spectrum and flavor...

Dark Matter

Neutrino Physics

Signatures of new physics could show up in neutrino directions, spectrum and flavor...

Dark Matter

Signatures of new physics could show up in neutrino directions, spectrum and flavor...

Dark Matter

Or in the form of rare event topologies...

Upcoming Works from IceCube

- Heavy Neutral Leptons
- Multi-messenger DM searches (Combined $\nu + \gamma$ search with dwarf-spheroidals)
- Neutrino-DM Interactions in point sources
- Search for Lorentz Invariance Violation
- Neutrino Trident Production
- Long-lived particles
- Fractionally charged particles
- Sterile Decay
- Magnetic Monopoles

Future

- IceCube has completed nearly 15 years of successful operations with robust measurements of a TeV—PeV neutrino flux.
- Neutrinos offer a unique window into extensions of the SM.
- Recent searches have placed some world-leading constraints on various BSM parameters.
- Low energy upgrade will extend these searches to unprecedented sensitivity in the coming years. Highly complementary to terrestrial beam-dump, and photon-based astrophysical detectors.

Back Up

Probing Standard Model Extensions

Constraining Sterile Decay

Dark Matter

Neutrino Physics

Cosmic Rays

Atmospheric Muons 10¹¹/year

10⁵/year

Atmospheric Neutrinos

Neutrino Oscillations at long baselines

Astrophysical Neutrinos

~100/year

Cosmic Rays

Atmospheric Muons 10¹¹/year

10⁵/year

Atmospheric Neutrinos

Neutrino Oscillations at long baselines

Astrophysical Neutrinos

~100/year

Cosmic Rays

Atmospheric Muons 10¹¹/year

10⁵/year

Atmospheric Neutrinos

Neutrino Oscillations at long baselines

Astrophysical Neutrinos

Mass

~100/year

 $|v_{\alpha}\rangle = \sum U^*_{\alpha k} |v_{k}\rangle$

Flavour

Courtesy: Summer Blot

Cosmic Rays

Atmospheric Muons 10¹¹/year

10⁵/year

Atmospheric Neutrinos

Neutrino Oscillations at long baselines

Astrophysical Neutrinos

~100/year

Mass

 $|v_{a}\rangle = \sum U^{*}_{ak} |v_{k}\rangle$

Amplitude Frequency $P_{\alpha \to \beta} = \sin^2(2\theta) \sin^2(1.27 \cdot \Delta m^2 \cdot L / E)$

Flavour

Cosmic Rays

Atmospheric Muons 10¹¹/year

10⁵/year

Atmospheric Neutrinos

Neutrino Oscillations at long baselines

Astrophysical Neutrinos

~100/year

Mass

 $|v_{\alpha}\rangle = \sum U^*_{\alpha k} |v_{k}\rangle$

Amplitude Frequency $P_{\alpha \to \beta} = \sin^2(2\theta) \sin^2(1.27 \cdot \Delta m^2 \cdot L / E)$

Flavour

IceCube measures the energy and zenith angle of neutrinos, with the zenith angle as a proxy for baseline distance traveled.

Probing BSM Physics with Neutrino Oscillations To first order, DeepCore is sensitive to Δm_{32}^2 and θ_{23}

Probing BSM Physics with Neutrino Oscillations To first order, DeepCore is sensitive to Δm_{32}^2 and θ_{23}

Non-standard oscillations modify mixing matrix

Going After the Sterile Neutrino

Proposed as a resolution to various experimental anomalies in short-baseline oscillation experiments.

Candidate DM particle

Going After the Sterile Neutrino

Candidate DM particle

Relativistic Monopoles

Magnetic monopole Through-going muon

Credit: Alexander Burgman

Particle shower Dim muon

Relativistic Monopoles

