Hadronic Interaction Models at the Highest Energies

CIPANP 2025

Dennis Soldin

University of Utah

THE UNIVERSITY of UTAH

The Highest Energies

This talk: Cosmic-ray measurements at energies above 1 PeV

The Highest Energies

This talk: Cosmic-ray measurements at energies above 1 PeV

Ultra-High Energy

- Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

► Need accelerator of size of Mercury's orbit to reach 10²⁰ eV with current technology!

Cosmic Rays

- Energy spectrum very well-known up to above ~ $100 \text{ EeV} (10^{20} \text{ eV})$
- However, large uncertainties in CR mass composition measurements remain!

[H.P. Dembinski et al., PoS ICRC2017 (2017) 533]

<u>CR properties are inferred indirectly from measurements of Extensive Air Showers (EAS)!</u>

[K.-H. Kampert, M. Unger, Astropart. Phys. 35 (2012) 660–678]

Extensive Air Showers

• Hadronic interactions are crucial for the EAS development

Plays an important role, transferring energy from the hadronic to the electromagnetic cascade!

Cosmic Ray

Extensive Air Shower EAS

Ground-Based Particle Detector not to scale!

Cosmic-Ray Measurements

Credit: R. Engel

Muon Measurements in EAS

- Muons are messengers of the hadronic interactions in EAS
- Significant discrepancies in the number of muons in EAS observed between MC and data!
- Comparison to model predictions using z-values:

$$z = \frac{\ln(\rho_{\mu}) - \ln(\rho_{\mu,p})}{\ln(\rho_{\mu,Fe}) - \ln(\rho_{\mu,p})}$$

- Data agrees with proton composition: z = 0
- Data agrees with iron composition: z = 1
- z-values depend on hadronic models

[A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D91 (2015)] [A. Aab et al. (Pierre Auger Collaboration), Eur. Phys. J. C 80 (2020)]

Muon Measurements in EAS

- Muons are messengers of the hadronic interactions in EAS
- Significant discrepancies in the number of muons in EAS observed between MC and data! data
- Comparison to model predictions using z-values: $\ln(\rho_u) - \ln(\rho_{\mu,p})$

$$\ln(\rho_{\mu,\text{Fe}}) - \ln(\rho_{\mu,\text{p}})$$

- Data agrees with proton composition: z = 0
- Data agrees with iron composition: z = 1
- z-values depend on hadronic models

[A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D91 (2015)] [A. Aab et al. (Pierre Auger Collaboration), Eur. Phys. J. C 80 (2020)]

Muon Measurements in EAS

- Muons are messengers of the hadronic interactions in EAS
- Significant discrepancies in the number of muons in EAS observed between MC and data! data
- Comparison to model predictions using z-values:

z =

- Data agrees with proton composition: z = 0
- Data agrees with iron composition: z = 1
- z-values depend on hadronic models

 $In(\rho_{u,Fe})$

MC

[A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D91 (2015)] [A. Aab et al. (Pierre Auger Collaboration), Eur. Phys. J. C 80 (2020)]

Global Muon Measurements

• Muon lateral density in EAS after cross-calibration of the energy-scales

Combined Muon Measurements

• Muon lateral density in EAS after cross-calibration of the energy-scales

• Muon number (R_{μ}) and mean production depth as function of mean X_{max}

nta

E

Consistently observed by several experiments

Unlikely, due to measured muon fluctuations (Auger) and TeV muon measurements by IceCube (later...)

nta

E

Consistently observed by several experiments

Unlikely, due to measured muon fluctuations (Auger) and TeV muon measurements by IceCube (later...)

Very unlikely, small variations (5 %)between shower codes, well studied

pro

Study of Shower Impact Parameters

see also [J. Albrecht, ..., D. Soldin et al., Astrophys. Space Sci. 367 (2022)]

rta

Consistently observed by several experiments

Unlikely, due to measured muon fluctuations (Auger) and TeV muon measurements by IceCube (later...)

Very unlikely, small variations (5 %)between shower codes, well studied

pro

Extensive Air Showers

• Hadronic interactions are crucial for the EAS development

Plays an important role, transferring energy from the hadronic to the electromagnetic cascade!

Cosmic Ray

Extensive Air Shower EAS

Ground-Based Particle Detector not to scale!

- Difficult to change *R* within standard QCD
- Possible explanations for the Muon Puzzle:
 - Neutral rho meson enhancement, e.g. [1]
 - Decay of ρ_0 via charged pions into muons
 - Muon production at <u>all energies</u>
 - ▶ Baryon enhancement, e.g. [2]
 - Many re-interactions, low-energy particles
 - Mainly <u>low-energy muons</u>
 - Stangeness enhancement, e.g. [3]
 - Evidence from ALICE at LHC
- <u>Different predicted muon spectra!</u>

[1]: See e.g. [F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, T. Stanev, Phys. Rev. D 102 (2020)]

[2]: See e.g. [T. Pierog, K. Werner, Phys. Rev. Lett., 101 (2008)]

[3]: See e.g. [ALICE Collaboration, Nature Phys. 13 (2017) 535, L. Anchordoqui et al., JHEAp 34 (2022)]

IceCube

- IceCube measures
 - GeV muons at the surface
 - TeV muons in the deep ice
- Challenges ρ_0 enhancement, also indication from fluctuations of muons in Auger
- Sibyll 2.1 (oldest model) seems to describe data best...

Inconsistencies between GeV and TeV muons!

[S. Verpoest (IceCube Collaboration), PoS(ICRC2023)207 (2023)]

Sibyll *

- Series of phenomenologically modified versions of Sibyll 2.3d
- Ad-hoc event modifications:

[F. Riehn, A. Fedynitch, R. Engel, Astropart. Phys. 160 (2024)]

Sibyll 2.3d Sibyll 2.1 $S^{\bigstar}(\bar{p})$ $S^{\bigstar}(\rho^0)$ $S^{\bigstar}(K^{\pm,0})$ $S^{\star}(mix)$ Auger

Strangeness Enhancement

- [J. Adam et al. (ALICE), Nature Phys. 13, 535 (2017)]
- Can this effect also be seen in hadrons produced at forward rapidities?
- Simple toy model: [L. Anchordoqui et al., JHEAp 34 (2022)]
 - Strangeness enhancement realized by $\pi \stackrel{\circ}{\leftrightarrow} K$ swapping
 - Swapping fraction f_s
- Possible explanation for the Muon Puzzle in EAS!
- Strong tension with latest FASER results!
- See also plenary talk tomorrow...

Indications for strangeness enhancement in the mid rapidity region reported by ALICE

Strangeness Enhancement

- [J. Adam et al. (ALICE), Nature Phys. 13, 535 (2017)]
- Can this effect also be seen in hadrons produced at forward rapidities?
- Simple toy model: [L. Anchordoqui et al., JHEAp 34 (2022)]
 - Strangeness enhancement realized by $\pi \leftrightarrow K$ swapping
 - Swapping fraction f_{c}
- Possible explanation for the Muon Puzzle in EAS!
- Strong tension with latest FASER results!
- See also plenary talk tomorrow...

Indications for strangeness enhancement in the mid rapidity region reported by ALICE

[R. M. Abraham et al. (FASER Collaboration), Phys. Lett. 134 (2025)]

EPOS-LHC-R

- Update of EPOS-LHC model
 - Enhancement of ρ_0 through modified collective hadronization
 - Core-corona effect
 - Best description of LHC / NÁ61 data
 - Also, change of X_{max} through 10% change in inelastic cross-section
 - Tests with EAS data required!!

Outlook into the Next Decade

- Large variety of new data:
 - EAS detector upgrades will become fully operational, e.g. AugerPrime, IceCube upgrade
 - Precise muon measurements of multiple observables by multiple EAS experiments, e.g. N_{μ} , X_{max} , $X_{\mu,max}$, zenith angle evolution, spectral information
 - New accelerator data, e.g. Run 3 at LHC (Oxygen data)
- Strong constraints on hadronic interaction models (muon enhancement models)
 - Precise characterization (solution?) of the Muon Puzzle within the next decade expected!
- See also talk by E. Mayotte today,

[A. Coleman, ..., D. Soldin et al., Astropart. Phys. 149 (2023)]

Outlook beyond the Next Decade

- Precise measurements in the forward region at the High-Luminosity LHC will further constrain hadronic interaction models
- Hadronic models have to describe both EAS and LHC measurements
 - Tests of hadronic models at energies much higher than the LHC (far-forward region)!
- Once the hadronic interaction models can successfully describe all details they will become reliable tools for the development of the proposed Future Circular Collider (FCC)
 - Validation of EAS models at the (HL-)LHC / FPF / FCC
- If LHC data is reproduced but Muon Puzzle remains:
 - Tests of beyond SM physics / exotic scenarios, e.g.
 - ► Lorentz-invariance violation, super-heavy Dark Matter, macroscopic Dark Matter, ...
- Exciting times ahead!

Outlook beyond the Next Decade

- Precise measurements in the forward region at the High-Luminosity LHC will further constrain hadronic interaction models
- Hadronic models have to describe both EAS and LHC measurements
 - Tests of hadronic models at energies much higher than the LHC (far-forward region)!
- Once the hadronic interaction models can successfully describe all details they will become reliable tools for the development of the proposed Future Circular Collider (FCC)
 - Validation of EAS models at the (HL-)LHC / FPF / FCC
- If LHC data is reproduced but Muon Puzzle remains:
 - Tests of beyond SM physics / exotic scenarios, e.g.
 - ► Lorentz-invariance violation, super-heavy Dark Matter, macroscopic Dark Matter, ...
- Exciting times ahead!

Thank you!

Global Muon Measurements

• Muon lateral density in EAS as reported by 9 experiments (known energy offsets)

- Slope of the excess is significant with more than $8\sigma!$
- Indicates severe shortcomings in the understanding of hadronic interactions

Subtracting expected values z_{mass} obtained from GSF flux model (consistent with X_{max})

QGSJet-II.04

[D. Soldin et al. (WHISP), PoS ICRC2021 (2021) 349]

The Muon Puzzle in EAS

- Accelerator measurements:
 - ALICE, CMS/CASTOR, LHCf, LHCb/SMOG, NA61/SHINE
 - Inelastic cross-sections
 - Hadron multiplicity
 - Elasticity
 - Hadron composition (ratio e.m. to hadr. energy flow)
 - Different
 - energies
 - rapidity ranges
 - particle types
- EAS data needed!

Proton-Air Cross-Section

- Proton-air cross-section measured by Auger and TA
- Based on measurements of the maximum of the (EM) production depth, X_{max}
- Complementary to collider measurements:
 - EAS particles: Nuclei, mesons, ...
 - CM energies: GeV to hundreds of TeV
 - Forward direction
 - Non-perturbative regime

[R. Ulrich (Pierre Auger Collaboration), PoS(ICRC2015)401 (2016)]

New Generation of UHECR Observatories

- New large-scale EAS observatories with particle detectors (GCOS, IceCube-Gen2, GRAND?) will provide large aperture and thus unprecedented event statistics
- Possibly new EAS observables and analysis techniques to test hadronic interaction models New era of high-precision measurements with EAS!

Multi-hybrid

	2.2	
	2	L
	1.8	actor
	1.6	nerit f
· ·	1.4	Fe T
	1.2	ġ
	1	
\cap	I	