Recent Results from Super-K Ed Kearns – Boston University CIPANP 2025 Madison WI

© David Fierstein, originally published in Scientific American, August 199

Super-Kamiokande Experimental Phases

SK-Gd (gadolinium enhanced neutron capture)			$\boldsymbol{\varepsilon}_{capture}$
2019	SK-V	still pure water	25%
2020	SK-VI	0.011% Gd	50%
2022	SK-VII	0.033% Gd	75%
2024	SK-VIII	0.033% Gd after recovery of magnetic coil issue	75%

Challenges:

- Purify water without removing Gd
- Maintain high light transparency
- Maintain low radioactivity
- No degradation or corrosion of materials
- Prevent any Gd-water from leaking
- into the environment

Neutron Capture in SK-IV and SK-Gd SK-VI MC: $\bar{\nu}_{\mu}$ CCQE, $E_{\nu} = 0.63$ GeV SK-IV Electronics and DAQ upgrade: "record every hit" architecture allows us to detect neutron capture

Neutron Capture Performance

visible energy higher for capture on Gd

Science Goals as we complete Super-K

- Continue to extract information from solar neutrinos
- Be ready for supernova neutrinos and find diffuse ones
- Study 3-flavor oscillation of atmospheric neutrinos
- Search for nucleon decay
- Astrophysical searches of all kinds

increasing neutrino energy

+

Be the far detector for **T2K**

Solar Neutrinos

Supernova

Galactic Supernova at 10 kpc

Angular resolution ~ 2x improved by SK-Gd

 $\bar{\nu}_e + p \rightarrow e^+ + n$

	Livermore	Nakazato
$\overline{\nu}_{e}p \not\rightarrow e^{\scriptscriptstyle +}n$	7300	3100
$v+e^{-} \rightarrow v+e^{-}$	320	170
¹⁶ O CC	110	57

Diffuse Relic Supernova Neutrinos

DSNB rate depends on:

- supernova rate
- star formation
- black hole formation
- supernova neutrino production
- cosmic expansion
 Wide range of predictions:

Recent improvements to "ATMPD" analyses

Enlarge fiducial volume (adds 4.7 kton)

future: count and detect neutrons to estimate hadronic energy and direction

Matter Effects

v_e/\bar{v}_e separation by boosted decision tree

17

Super-K atmospheric oscillation* result with reactor constraint

- Favors lower octant (upper octant in 2018 paper)
- Favors normal ordering $\Delta \chi^2_{NO-IO} = -5.7$
- Preference for normal ordering using CLS = 0.077 (reject inverted ordering at 92.3%)

Particle physics Fundamental physics is frustrating physicists

The Economist

No GUTs, no glory

Jan 13th 2018

https://www.economist.com/news/science-and-technology/21734379-no-guts-no-glory-fundamental-physics-frustrating-physicists

background reduction in ¹⁶O region improved by roughly x2 using n-capture

 $au/B(e^+\pi^0) > 2.4 \times 10^{34}$ years $au/B(\mu^+\pi^0) > 1.6 \times 10^{34}$ years

preliminary, 450 kt y expanded fiducial volume neutron capture

Unfortunately – no nucleon decay signal, all limits, so far.

something new... (most of our astrophysical searches have emphasized muon neutrinos, especially upward-going)

Search for Astrophysical Electron Neutrinos in Multi-GeV Sample

motivated by IceCube evidence for cascade events from galactic plane

61% efficiency70% pure CC electron neutrino

0

.

Conclusion

- Continue to extract information from solar neutrinos important constraints on θ_{12} , 1.5 σ tension with KamLand in Δm^2 , try to find upturn
- Be ready for supernova neutrinos and find diffuse ones we are ready for galactic supernova burst ~ 99% live use SK-Gd to discover DSNB
- Study 3-flavor oscillation of atmospheric neutrinos neutrino ordering, octant, CP violation more data and improvements for Neutrino 2026
- Search for nucleon decay By 2029, 9 years SK-Gd of data yet to be analyzed (50% increase)
- Astrophysical searches of all kinds look back in past data, valuable to check new or bursting sources

