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Talk outline

• First part of the talk:


• Short review of the general status of Machine Learning based 
parameter inference in cosmology. 


• Second part of the talk:


• Some of our recent work on a special case: Machine Learning in 
the squeezed limit.



Goals and Challenges 
for AI in cosmology



Grand-Unified Cosmology Analysis

Figure credit: Chiway Chang, SkAI.



Main parameters we’d like to improve
• Expansion: H, w0, wa


• Obviously exciting currently, IF gains are possible. 


• BAO dominated.


•  and . 


• Main parameters many AI in LSS methods focus on.


• Interesting if there are tensions with other measurements (CMB).


• Primordial power spectrum, Primordial non-Gaussianity 

• Strong CMB data.


• I’ll ignore scale-dependent, time-dependent, anisotropic, localized etc. 
models, where improvements can be larger. 

Ωm σ8



General approaches
• There are three directions people look at to improve constraints from LSS 

with these methods:


1. Learning bias priors for the PT based PS+BS large-scale analysis. 


2. Doing a PT field level analysis of the same scales to extract information 
beyond PS+BS (and break bias degeneracies). 


3. Going to more non-linear scales scales than PT allows by replacing it 
with simulations. Either SBI (implicit) or FLI (explicit). 


• I want to focus on results and problems for the third case. 



Methods
• Many combinations of the following methods have been explored:


• Field level vs Summary Statistics: E.g. use a NN vs wavelet scattering 
transform


• Model of the physics: Perturbation theory forward model, N-body 
simulation, Neural Networks, combinations thereof.


• Re-learn vs augment: Replace PT or N-body completely with a NN, or 
augment the classical method.


• Architectures for NN: CNN, GNN, Normalizing Flow, Diffusion Models, 
Transformers, combinations thereof.


• Training techniques / objectives: supervised MSE, contrastive loss, pre-
training (foundation models), etc. 


• Inference / Sampling methods: MCMC, “likelihood free inference”, HMC, 
Variational Inference, Diffusion Score Matching, combinations thereof.



Problem 1: Measurements are already tight
• Measurements from the linear and weakly non-linear regime using the 

power spectrum from large volume surveys are already strong.


From: https://arxiv.org/abs/2504.10407 
Enhancing DESI DR1 Full-Shape analyses using HOD-informed priors

DESI + CMB:

Planck alone:

• Roughly speaking, to beat large-volume surveys by accessing more non-
linear scales, we need to be able to control systematic simulation 
uncertainties on smaller scales at higher accuracy than the constraint 
from larger scales.

Planck:

https://arxiv.org/abs/2504.10407


Problem 2: The shot noise is large
• A lot of works (including my own) have at first been developed at the level of the 

simulated dark matter distribution.


• Often the improvements achieved at matter level nearly go away at halo level.


•

Quijote

The perturbative range and the shot noise 
limited range are not so far away from 
another. 



Problem 3: Likelihoods tend to be Gaussian

• A lot of work has gone into 
learning likelihoods or 
posteriors of summary 
statistics. However, likelihoods for 
summary statistics, like PS or 
WST, tend to be Gaussian to good 
approximation. 


• It is always more sample efficient 
to put in the inductive bias of 
Gaussianity, when it applies.


• SBI methods also often do not 
work very well with realistic 
simulation budget, in my 
experience. 

https://arxiv.org/abs/2310.03741 Tucci, 
Schmidt: EFTofLSS meets simulation-based 
inference: Sigma8 from biased tracers


Used PS+BS as summary statistics for SBI.

https://arxiv.org/abs/2310.03741


Example for SBI: SimBIG project
• SimBIG Forward model, based on Quijote simulations + HODs.

https://arxiv.org/abs/2211.00660 Hahn et. al. SIMBIG: Mock Challenge for a 
Forward Modeling Approach to Galaxy Clustering


https://arxiv.org/abs/2211.00660


Status of SBI methods: SIMBIG results
• https://arxiv.org/abs/2310.15246 Hahn et. al. SIMBIG: The First Cosmological 

Constraints from Non-Gaussian and Non-Linear Galaxy Clustering

Tighter constraints on 
smaller volume, but also 
uses higher k. 


Robustness depends on 
forward model / HOD 
accuracy and 
convergence of SBI / NF 
(both of which were 
investigated by the authors 
of course). 


Related: https://arxiv.org/abs/2309.15071 Sensitivity Analysis of Simulation-Based Inference for Galaxy Clustering


https://arxiv.org/abs/2310.15246
https://arxiv.org/abs/2309.15071


Beyond 2pt mock challenge

• The most systematic comparison of methods so far. 


• Bacco power spectrum emulator was leading (going to high k).


• SBI result only used a sub-volume (1/8th). Illustrates the difficulty of scaling 
up volume in this approach. 


• FBI only applied to a simpler setup in this first round.

https://arxiv.org/abs/2405.02252  Krause et. al. A Parameter-Masked Mock Data Challenge for 
Beyond-Two-Point Galaxy Clustering Statistics

https://arxiv.org/abs/2405.02252


Squeezed-Limit Machine 
Learning for local NG

Utkarsh Giri,

Postdoc at Caltech

Kendrick Smith,

Perimeter Institute

Yurii Kvasiuk, 
Grad student at UW 

Madison

arXiv:2410.01007 A Tale of Two Fields: Neural Network-Enhanced non-
Gaussianity Search with Halos 
https://arxiv.org/abs/2205.12964 Robust Neural Network-Enhanced 
Estimation of Local Primordial Non-Gaussianity 

https://arxiv.org/abs/2410.01007
https://arxiv.org/abs/2205.12964


General Idea
• There are situation in cosmology where we use very non-linear small-

scale structure to infer large-scale modes from them. 


• In that case, uncertainty over small-scale physics can be 
parametrized in terms of one or more bias parameters on large 
scales. 


• If we use machine learning in this way, we can create robust methods. 


• Of course this only works for specific parameters, and is not in 
competition with the methods I discussed previously. 



Local non-Gaussianity fNL generates an excess clustering on large scales.This 
effect is called scale-dependent bias of the halo field (0710.4560).


The “kink” in the power-spectrum cannot be introduced by non-linear 
astrophysics. This robustness is ultimately a consequence of Einstein’s 
Equivalence Principle. 


Scale-dependent bias and  fNL

δh(kL) = (bG + bNG
fNL

k2
L ) δm(kL)

We have a symmetry protected observable. Can we enhance 
its SNR with a NN without spoiling the robustness? 

Gaussian bias non-Gaussian bias, 
measures fNL



• Local non-Gaussianity is a large-scale modulation of small-scale power.


• The traditional scale-dependent halo bias works because the local halo 
density is a sensitive measurement of . 


• Intuitively: If we measure , the primordial power spectrum amplitude, 
as well as possible, and we also measure the modulating long range mode as 
well as possible, then we should be able to make an optimal estimate of .

σloc
8 (x)

σloc
8 (x)

fNL

The physics of local non-Gaussianity

σloc
8 (x) = (1 + 2fNLΦl(x)) σ̄8



Idea: Local non-Gaussianity fNL is a large-scale modulation of local 
power. Therefore if we have a neural network that optimally probes 
local power (i.e. local σ8), it would be the ideal field to base an fNL 
estimate on.


This local NN output field will also have a scale-dependent fNL bias.

CNN for local σ8 measurements

Receptive field of CNN



• Any field 𝜋(x) that is sensitive to  can be modeled on large scales 
in the same way as the familiar halo field:


• Examples of 𝜋(x) fields:


• The halo density  in some mass bin (traditional method).


• The locally measured (position-dependent) halo power spectrum. 


• A neural network trained to measure the local primordial power 
spectrum amplitude.

σloc
8 (x)

δh

Scale Scale-dependent bias in the -field formalismπ

δπ(kL) = (bG
π + bNG

π
fNL

k2
L ) δm(kL)

Gaussian bias non-Gaussian bias bNG
π =

∂π̄
∂ log σ8



The analytic model matches the NN output

10°26 £ 10°3 2 £ 10°2 3 £ 10°2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

b º

bmodel
º |fNL=250

bmodel
º |fNL=0

bdata
º |fNL=250

bdata
º |fNL=0

10°26 £ 10°3 2 £ 10°2 3 £ 10°2

k [h Mpc°1]

250

500

750

1000

N
º
º

Ndata
ºº

Nmodel
ºº

The signal power spectrum 
and noise power spectrum of 
the NN output behave exactly 
as we predict analytically. 

We also have some a proof 
that our method is optimal 
under certain circumstances.

“Halo bias” of the neural network output field π



Result: Strong improvement in sensitivity to fNL

Under simulation conditions, the new method is several times more 
sensitive than the “old” analytic method. 

Black: analytic method without NN 
Red: new NN method 

Using Quijote-PNG simulations with 
fNL = 100.

Caveat: In this analysis, the neural network gets to see the matter field, which is not 
directly observable. 




Equivalence between  and  measurementfNL σ8
Recall that non-Gaussian bias is defined as


Thus any field  with  will be sensitive to . We can construct a 
statistic that we will use to constrain  as follows


The statistical error on  from this statistic can be calculated to be 


Thus the Fisher information on  and on  both scale in the same way:  

π bng ≠ 0 σ8
σ8

σ8

σ8 fNL

bNG
π =

∂π̄
∂ log σ8

π̄ =
1
V ∫x

π(x)

Δσ8 =
σ8

V ( N1/2
π

bNG
π )

ΔfNL
∝ Δσ8

∝
(N′ )1/2

b′ ng



Optimality of the Loss function
The previous argument showed that a field that is maximally good at 
measuring  will also be maximally good at measuring  through scale-
dependent bias. 


Thus we can train a neural network to measure , on simulations without 
, and then use it to measure . 


An optimal loss function is given by 


In the paper we have a more formal proof of optimality. 

σ8 fNL

σ8
fNL fNL

J = ⟨(π̄ − σtrue
8 )2⟩simulations

= ⟨( 1
V ∫ π(x)dV − σtrue

8 )
2

⟩
simulations



Halo analysis: Learning two optimal fields

If the matter field is not known (but rather we see only the halos), we can prove 
mathematically that it is possible to construct an optimal method by learning two fields: 


1. a reconstruction of the local  field (as in the last section)


2. a reconstruction of the matter field  (i.e. learn to remove as much shot noise as 
possible)


σloc
8 (x)

δm



AbacusPNG with two CNN fields  and πNN
σ πNN

m
• After training two CNNs, one to reconstruct 

the  field and one to reconstruct the  
field, we then apply these networks to 
AbacusPNG test data.


• We run the same MCMC analysis as for 
ordinary scale-dependent bias, but now 
using the two novel fields.


• We find strong unbiased constraints on 
 (in particular when adding halo 

concentrations) and unbiased estimates. 

σ8 δm

fNL



Upcoming: From CNN to GNN
• Individual halo positions (and other individual 

properties) should contain extra information 
on . 


• Recent work (e.g. 2204.13713) has shown that 
Graph Neural Networks are very suitable to 
this task.


• We compared on CAMELS whether the GNN 
beats halo counting for . 

• Recall the proportionality:

σ8

σ8 Graph example for (25MPc)^3 
CAMELS Illustris LH hydro sims suite 

ΔfNL
∝ Δσ8



Measuring  on CAMELSσ8
• Do halo positions add information on  over halo masses? YES.  

• For CAMELS, we find that the GNN (input: individual masses+positions) does 
outperform an MLP/CNN (input: local halo mass function) in predicting .

σ8

σ8

CAMELS Illustris Hydro. Using 
sub-halos as a proxy for 
galaxies.



So can we tighten fNL significantly in practice?

• Even though our method has convenient properties, this question is 
STILL hard to answer. 


• On CAMELS, it appears that our method works but CAMELS does not 
have large halos, which contribute a lot of signal in larger volumes.


• Results for halo or galaxy-wise measurements also depend on what 
halo/galaxy properties can be measured how well. E.g. halo 
concentration.


• On Abacus halos, we are somewhat limited by the lack of continuous 
training data. Leads to convergence problems with the GNN.


• Upcoming work: 


• More detailed analysis for more realistic survey.


• Extend our method to weak lensing.



Aside: Reconstruct the local electron and dark matter density

• If we use the reconstructed electron template for the quadratic estimator in kSZ velocity 
reconstruction, then this is also a “squeezed limit machine learning method.” 


• Again, we can marginalize on large scales about a bias factor that takes into account 
simulation uncertainty.

2411.02496 Reconstruction of Continuous Cosmological Fields from Discrete Tracers 
with Graph Neural Networks. And upcoming followup.

https://arxiv.org/abs/2411.02496


Thanks!


