

Simone Stracka, INFN Pisa

CIPANP - Madison (WI) - 9-13 june 2025

ALPHA program: antihydrogen spectroscopy and gravity

- Repeat on antihydrogen the measurements done on hydrogen over time
 - As many as it is reasonable, and maybe a few more (we don't have a wide selection of anti-elements to choose from)
- With the best achievable precision
 - \circ A mix of old and recent techniques
 - \circ Using today's state of the art techniques, e.g., in metrology
- Taking into account the special environment constraints imposed by dealing with antimatter
 - Strong inhomogeneous magnetic fields to confine anti-atoms
 - \circ To study anti-atoms, we must make them

Production

The PS-AD/ELENA complex at CERN

Accumulating positrons

- e+ from ²²Na radioactive source
- sympathetically cooled with Berillium ions

=

p

- Nested wells in the same Penning trap, with positrons separated from antiprotons
- Antiprotons are gradually moved closer to, and then into, the positron cloud
- Anti-hydrogen is formed in a three-body recombination process (1 s mixing)
 - \circ Then quickly cascade to the ground state (τ < 0.5 s)
- Extra magnets to confine the produced anti-atoms

Trapping antihydrogen

ALPHA-2 and ALPHA-g

- ALPHA-2 (2012-): optimized for laser spectroscopy
- ALPHA-g (2018-): optimized for control of magnetic fields
- All share the same working principles

Spectroscopy

Timeline

- 2012: Observation of microwave driven spin-flips [Nature 483, 439]
- 2017: Observation of the 1S-2S transition [Nature 541, 506]
- 2017: Measurement of the ground-state hyperfine splitting [Nature 548, 66]
- 2018: Characterisation of the 1S-2S transition lineshape [Nature 557, 71]
- 2020: Investigation of the 1S-2P transition [Nature 578, 375]
- 2025: Hyperfine components of the 1S–2S transition [Nature Physics 21, 201]

microwave laser

What use for antihydrogen spectroscopy?

Mass (GeV/c²)

- symmetry holds in the usual (local, Lorentz invariant) QFT, but may be broken, e.g., when introducing gravity
- different systems probe different combinations of specie-dependent operators in effective theories (SME [Kostelecky et al.])

 $E_{1S-HFS}(H) = \begin{bmatrix} 1418840.082(9) + 1612.673(3) + 0.274 \end{bmatrix}$

 $E_{\rm F}$

Here
$$(GeV)^{2^{-1}}$$

Here $(GeV)^{2^{-1}}$
Here $(GeV)^{2^{-1}}$

$$-54.430(7) \left(\frac{r_{Zp}}{\text{fm}}\right) + E_{\text{F}} \left(0.99807(13) \Delta_{\text{recoil}} + 1.00002 \Delta_{\text{pol}}\right) \right] \text{kHz}$$

OED+weak

μVP

Hyperfine structure of ground state antihydrogen

• c-b and d-a transitions are easily accessible

- Microwave can travel down the Penning trap electrodes
- Difference of frequencies ~ constant with B ("21 cm line")
- These transitions flip the positron spin and push the atom from the trap
- NMR transitions below microwave frequency cutoff for Penning trap electrodes
 - \circ 30 GHz ~ 1 cm
 - 1420 MHz ~ 21 cm
 - \circ 650 MHz ~ 45 cm

$$E = E_{n00} + \frac{A}{4} \pm \mu_B B$$
 $E = E_{n00} - \frac{A}{4} \pm \sqrt{\left(\frac{A}{2}\right)^2 + (\mu_B B)^2}.$

Detecting antihydrogen

Frequency scan

- Transition frequencies strongly depend on magnetic field
- Particles wander through the highly inhomogeneous confining B field
 - Warmer particles spend more time at higher B-fields
- Frequency scan by monotonically increasing frequency over time
 - \circ Preferentially drive the transition close to the region of minimum B-field
 - \circ Associate time of observed annihilations to injected microwave frequency

Features of anticipated annihilation time distribution

- Abrupt onset associated with minimum in magnetic field
 - \circ $\hfill The difference between onsets is the HFS frequency$
 - The position of the onset can be used to monitor the B-field. Initially limited by statistics
- Long tail related to more energetic atoms
- The power at the two transitions may be different
 - Unknown frequency-dependent microwave field structure
 - \circ Lineshape need not be the same for the two transitions

Hbar HFS1S: current experimental status

- f_{HFS}(1S) = 1420.4 ± 0.5 MHz
 - from the frequency difference between the first signals from the two transitions
- Sources of uncertainty:
 - Determination of onset frequencies (0.3 MHz)
 - Combination of data from different runs (0.3 MHz)
 - Drifts in the magnetic field during the scan (0.3 MHz)

Increase frequency scan granularity

- Heating of the trap: limits on injected microwave power and irradiation time
- To increase spin-flip probability near B_{min}, flatten
 B-field = increase time spent by Hbar at lower B

Relative frequ

17

7.0

Modelling the signal

INFN PISA

- Extract frequency shift between annihilation signals for the two transitions
- Depletion distributions resulting from
 - structure of the non-uniform trapping field
 - \circ local microwave power seen by the atoms
 - \circ motional broadening effects \rightarrow O(10 kHZ), not relevant in 2017 analysis
- Empiric model informed by simulation \rightarrow largest source of systematic uncertainty
 - Orbits of the atoms through the magnetic field
 - ~ the same for $|c\rangle \rightarrow |b\rangle$ and $|d\rangle \rightarrow |a\rangle$
 - Balance microwave powers at the two transitions
 - equalize the distributions

Better control of magnet operations and characterization

- External solenoid to target field & into persistent mode
- Energize trap magnets
 - Short-term upward B drift, depends on history of magnet operations
 - After 1hr, enter linear decay (@ ~74 kHz/hr)
- Consecutive measurements without resetting the trap
 - Measure and correct for the ~ 20 kHz drift between 'cb' and 'da' scans

Approaching a 10 kHz HFS-1S measurement at 1T

- A 50x improvement w.r.t. previous measurement •
- Match precision of optical spectroscopy of $1S_c-2S_c$ and $1S_d-2S_d \rightarrow HFS-2S$
- Precise in-situ monitoring of the variations of magnetic field

r8

r7

r6

r5

Implications for CPT tests?

- $\begin{array}{l} f_{ad} \text{-} f_{bc} \text{ is not sensitive to SME, but } f_{ca} \text{ or -} \\ equivalently f_{dc} (NMR) \text{ are} \\ \circ \quad f_{ca} \text{ very challenging} \\ \circ \quad f_{dc} \text{ requires new hardware} \end{array}$
- Experiment in intense inhomogeneous magnetic fields
 - **Extrapolations** 0
 - Systematic effects 0
- Solution 1: measure hydrogen under the same conditions
- Solution 2: measure several transitions with similar precision
 - Ο
 - Monitor magnetic field (f_{avg}) Validate control of systematic effects (f_{HFS}) Measure CPTV-sensitive process (e.g., f_{NMR}) Ο
 - Ο

Outlook: antihydrogen hyperfine structure in ALPHA-g

- We have just started experimenting with a vertical trap in ALPHA
 - Plan to include a resonator to drive NMR d-c transition
 - Broad maximum at 0.65 T (f_{dc} = 654.9), 10⁻⁶-10⁻⁷ precision within reach
 - \circ Remove |c> population, excite |d> \rightarrow |c>, observe regenerated |c> population

The ALPHA Collaboration

University of **Brescia**, Italy

University of British Columbia, Canada

University of California University of Calgary, **Berkeley**, USA Canada

UNIVERSITY OF

University of Groningen, The Netherlands

Simon Fraser University, Canada

TRIUMF. Canada

University of Wales Swansea, UK

Cockcroft Institute, UK

York University,

Canada

Brookhaven National Laboratory, USA3

Thank you

2S state hyperfine splitting

- $D_{21} = 8f_{HFS}(2S) f_{HFS}(1S) \rightarrow Nuclear size effects cancel out$
- Combine optical measurement of 1S-2S (for each component) with HFS1S
 - HFS2S = (177.6 +/- 0.5) MHz

 $f_{ ext{c-c}}^{ ext{ ext{H}}} - f_{ ext{d-d}}^{ ext{ ext{H}}} = rac{1}{2}(ext{HFS1S} - ext{HFS2S}) + rac{2B}{h} \Big(\mu_{ ext{p}}\left(2 ext{S}
ight) - \mu_{ ext{p}}\left(1 ext{S}
ight) \Big)$

• Precision limited by HFS1S for antihydrogen \rightarrow want to push to 10 kHz

Implications for other measurements

- First measurement in ALPHA-g: balance gravity with magnetic field
 - \circ $a_g = [0.75 \pm 0.13 \text{ (statistical + systematic)} \pm 0.16 \text{ (simulation)}] g$
 - Limited by control and characterization of magnetic field

precision

measurement

An

xfer G

An

- PSR transitions can be part of the toolbox
 - \circ state selection

up-down measurement

initial trap

BCDEF

• in-situ magnetometry

G xfer

