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ALPHA program: antihydrogen spectroscopy and gravity
● Repeat on antihydrogen the measurements done on hydrogen over time 

○ As many as it is reasonable, and maybe a few more (we don’t have a wide selection of anti-elements to choose from)
● With the best achievable precision

○ A mix of old and recent techniques
○ Using today’s state of the art techniques, e.g., in metrology

● Taking into account the special environment constraints imposed by dealing with antimatter
○ Strong inhomogeneous magnetic fields to confine anti-atoms
○ To study anti-atoms, we must make them

2CG Parthey et al, Phys. Rev. Lett. 107, 203001 (2011) CL Cesar et al, Phys. Rev. Lett. 77, 255–258 (1996)

3 kHz ~ 10-12 10 Hz



Production
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The PS-AD/ELENA complex at CERN

4

● LEAR in the 90’s
○ 1995 - First few antihydrogen atoms

● AD (Antiproton Decelerator) since 2000
○ Decelerate to 5 MeV kinetic energy
○ 2002 - Lots of cold antihydrogen (ATHENA, ATRAP)
○ 2010 - Trapped Antihydrogen (ALPHA)

● ELENA (Extra Low ENergy Antiproton) since 2018
○ 107 antiprotons at 100 keV per bunch



Accumulating positrons
● e+ from 22Na radioactive source
● sympathetically cooled with Berillium ions
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Mixing positrons and antiprotons

● Nested wells in the same Penning trap, with positrons separated from antiprotons
● Antiprotons are gradually moved closer to, and then into, the positron cloud
● Anti-hydrogen is formed in a three-body recombination process (1 s mixing)

○ Then quickly cascade to the ground state ( τ < 0.5 s )

● Extra magnets to confine the produced anti-atoms 6
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Trapping antihydrogen
● Magnetic potential well U = -𝞵∙𝚩

○ 1T background field Bext
● Well depth: 0.54 K / 50 μeV
● Good vacuum

○ can keep trapped Hbar for several hours
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ALPHA-2 and ALPHA-g
● ALPHA-2 (2012-): optimized for laser spectroscopy
● ALPHA-g (2018-): optimized for control of magnetic fields 
● All share the same working principles 
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Spectroscopy
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Timeline
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● 2012: Observation of microwave driven spin-flips [Nature 483, 439]
● 2017: Observation of the 1S-2S transition [Nature 541, 506]
● 2017: Measurement of the ground-state hyperfine splitting [Nature 548, 66]
● 2018: Characterisation of the 1S-2S transition lineshape [Nature 557, 71]
● 2020: Investigation of the 1S-2P transition [Nature 578, 375]
● 2025: Hyperfine components of the 1S–2S transition [Nature Physics 21, 201]

microwave   laser



A. Antognini, Annu. Rev. Nucl. Part. Sci. 72:389 2022

What use for antihydrogen spectroscopy?
● Compare hydrogen and antihydrogen spectra: 

under CPT they should be the same

○ symmetry holds in the usual (local, Lorentz invariant) 
QFT, but may be broken, e.g., when introducing gravity

○ different systems probe different combinations of 
specie-dependent operators in effective theories 
(SME [Kostelecky et al.])
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Hyperfine structure of ground state antihydrogen

● c-b and d-a transitions are easily accessible
○ Microwave can travel down the Penning trap electrodes
○ Difference of frequencies ~ constant with B (“21 cm line”)
○ These transitions flip the positron spin and push the atom 

from the trap

● NMR transitions below microwave frequency cutoff 
for Penning trap electrodes

○ 30 GHz  ~ 1 cm
○ 1420 MHz ~ 21 cm
○ 650 MHz ~ 45 cm
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Detecting antihydrogen
● Hbar forced out of the trap annihilate
● Imaged by silicon strip detector

○ Main reducible background is cosmics: topology is different
○ Confined Hbar also annihilates on residual gas in the trap
○ Time and z profile of annihilations useful to discriminate ejection mechanism
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Nature 483, 439 (2012)



Frequency scan
● Transition frequencies strongly depend on magnetic field
● Particles wander through the highly inhomogeneous confining B field

○ Warmer particles spend more time at higher B-fields

● Frequency scan by monotonically increasing frequency over time
○ Preferentially drive the transition close to the region of minimum B-field
○ Associate time of observed annihilations to injected microwave frequency
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Features of anticipated annihilation time distribution

● Abrupt onset associated with minimum in magnetic field
○ The difference between onsets is the HFS frequency
○ The position of the onset can be used to monitor the B-field.  

Initially limited by statistics

● Long tail related to more energetic atoms

● The power at the two transitions may be different
○ Unknown frequency-dependent microwave field structure
○ Lineshape need not be the same for the two transitions
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Hbar HFS1S: current experimental status

● fHFS(1S) = 1420.4 ± 0.5 MHz 
○ from the frequency difference between the first signals from the two transitions

 
● Sources of uncertainty:

○ Determination of onset frequencies (0.3 MHz)
○ Combination of data from different runs (0.3 MHz)
○ Drifts in the magnetic field during the scan (0.3 MHz)
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PSR lineshapes, Nature 548, 66 (2017)
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300 kHz - 4 s / step

|c> → |b> 

|d> → |a> 



● Heating of the trap: limits on injected microwave 
power and irradiation time 

● To increase spin-flip probability near Bmin , flatten 
B-field = increase time spent by Hbar at lower B

● Steeper rising edge of annihilation time 
distribution → reduce the frequency step

Increase frequency scan granularity
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Modelling the signal

● Extract frequency shift between annihilation 
signals for the two transitions

● Depletion distributions resulting from
○ structure of the non-uniform trapping field
○ local microwave power seen by the atoms
○ motional broadening effects → O(10 kHZ), not 

relevant in 2017 analysis

● Empiric model informed by simulation → 
largest source of systematic uncertainty

○ Orbits of the atoms through the magnetic field 
■ ~ the same for |c> → |b> and |d> → |a>

○ Balance microwave powers at the two transitions
■ equalize the distributions
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Better control of magnet operations and characterization
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● Energize trap magnets
○ Short-term upward B drift, depends on 

history of magnet operations
○ After 1hr, enter linear decay (@ ~74 

kHz/hr)

● Consecutive measurements without
resetting the trap

○ Measure and correct for the ~ 20 kHz 
drift between ‘cb’ and ‘da’ scans Drift due to B-field decay
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favg=(fcb+fda)/2



Approaching a 10 kHz HFS-1S measurement at 1T
● A 50x improvement w.r.t. previous measurement
● Match precision of optical spectroscopy of 1Sc-2Sc and 1Sd-2Sd → HFS-2S
● Precise in-situ monitoring of the variations of magnetic field
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Implications for CPT tests? 
● fad-fbc is not sensitive to SME, but fca or - 

equivalently - fdc (NMR) are
○ fca very challenging
○ fdc requires new hardware

● Experiment in intense inhomogeneous 
magnetic fields

○ Extrapolations
○ Systematic effects

● Solution 1: measure hydrogen under the same 
conditions

● Solution 2: measure several transitions with 
similar precision

○ Monitor magnetic field (favg)
○ Validate control of systematic effects (fHFS)
○ Measure CPTV-sensitive process (e.g., fNMR)

21

https://doi.org/10.1098/rsta.2017.0273

● 1S-2S transitions probes a 
combination of electron and 
proton sector - 

■ The coefficient bZ for 
the relevant operator 
is suppressed by 
alpha^2 ~ 5x10-5 for 
d-d, by k = 50mT/B for 
c-c



Outlook: antihydrogen hyperfine structure in ALPHA-g

● We have just started experimenting with a vertical trap in ALPHA

● Plan to include a resonator to drive NMR d-c transition
○ Broad maximum at 0.65 T (fdc = 654.9) , 10-6-10-7 precision within reach
○ Remove |c> population, excite |d> → |c>, observe regenerated |c> population
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W. Hardy et al., PRL 42, 1042 (1979)
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The ALPHA Collaboration
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Thank you
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2S state hyperfine splitting 
● D21 = 8fHFS(2S) − fHFS(1S) → Nuclear size effects cancel out
● Combine optical measurement of 1S-2S (for each component) with HFS1S

○ HFS2S = ( 177.6 +/- 0.5 ) MHz

● Precision limited by HFS1S for antihydrogen → want to push to 10 kHz
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σ(1Sd-2Sd) 
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[Nature Physics 21, 201 (2025)]



● First measurement in ALPHA-g: balance gravity with 
magnetic field

○ ag = [0.75 ± 0.13 (statistical + systematic) ± 0.16 (simulation)] g
○ Limited by control and characterization of magnetic field

● PSR transitions can be part of the toolbox
○ state selection
○ in-situ magnetometry
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Drift due to B-field decay

Preliminary

Nature 621, 716 (2023)

Implications for other measurements


