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ALPHA program: antihydrogen spectroscopy and gravity INFN

PISA
e Repeat on antihydrogen the measurements done on hydrogen over time
o Asmany as it is reasonable, and maybe a few more (we don't have a wide selection of anti-elements to choose from)

e With the best achievable precision
o A mix of old and recent techniques
o  Using today’s state of the art techniques, e.g., in metrology
e Taking into account the special environment constraints imposed by dealing with antimatter

o  Strong inhomogeneous magnetic fields to confine anti-atoms
o To study anti-atoms, we must make them
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The PS-AD/ELENA complex at CERN @FN

e LEAR in the 90
o 1995 - First few antihydrogen atoms

e AD (Antiproton Decelerator) since 2000
o Decelerate to 5 MeV kinetic energy
o 2002 - Lots of cold antihydrogen (ATHENA, ATRAP)
o 2010 - Trapped Antihydrogen (ALPHA)
e  ELENA (Extra Low ENergy Antiproton) since 2018
o 107 antiprotons at 100 keV per bunch




PISA

Accumulating positrons INFN
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trap

Mixing positrons and antiprotons
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Nested wells in the same Penning trap, with positrons separated from antiprotons
Antiprotons are gradually moved closer to, and then into, the positron cloud

Anti-hydrogen is formed in a three-body recombination process (1 s mixing)
o  Then quickly cascade to the ground state (1< 0.5s)

Extra magnets to confine the produced anti-atoms
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Trapping antihydrogen

o Magnetic potential well U = -u'B
o 1T background field B_,

e Well depth: 0.54 K/ 50 peV

e (Good vacuum
o can keep trapped Hbar for several hours
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ALPHA-2 and ALPHA-g CNFN

e ALPHA-2 (2012-): optimized for laser spectroscopy
e ALPHA-g (2018-): optimized for control of magnetic fields my ==
e All share the same working principles G5y




Spectroscopy



Timeline INFN

2012: Observation of microwave driven spin-flips [Nature 483, 439]

2017: Observation of the 1S-2S transition [Nature 541, 506]

2017: Measurement of the ground-state hyperfine splitting [Nature 548, 66]
2018: Characterisation of the 1S-2S transition lineshape [Nature 557, 11]
2020: Investigation of the 1S-2P transition [Nature 578, 375]

2025: Hyperfine components of the 1S-2S transition [Nature Physics 21, 201]

microwave laser
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What use for antihydrogen spectroscopy? @

e Compare hydrogen and antihydrogen spectra: Mass (GeV/c?)
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Hyperfine structure of ground state antihydrogen INFN

e NMR transitions below microwave frequency cutoff

10 for Penning trap electrodes
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Detecting antihydrogen

e Hbar forced out of the trap annihilate

o Imaged by silicon strip detector
o Main reducible background is cosmics: topology is different
o Confined Hbar also annihilates on residual gas in the trap
o  Time and z profile of annihilations useful to discriminate ejection mechanism
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Frequency scan

Transition frequencies strongly depend on magnetic field
Particles wander through the highly inhomogeneous confining B field

o Warmer particles spend more time at higher B-fields

b

Frequency scan by monotonically increasing frequency over time
o  Preferentially drive the transition close to the region of minimum B-field
o Associate time of observed annihilations to injected microwave frequency
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Featyres of anticipated annihilation time distribution INFN

Transition probability (arbitrary units)
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PISA

e Abrupt onset associated with minimum in magnetic field

o  The difference between onsets is the HFS frequency
o The position of the onset can be used to monitor the B-field.
Initially limited by statistics

o long tail related to more energetic atoms

e The power at the two transitions may be different

o Unknown frequency-dependent microwave field structure
o Lineshape need not be the same for the two transitions
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Hbar HFS1S: current experimental status
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o 1, (15)=1420.4+05MHz

o from the frequency difference between the first signals from the two transitions

e Sources of uncertainty:

o Determination of onset frequencies (0.3 MHz)
o Combination of data from different runs (0.3 MHz)
o Drifts in the magnetic field during the scan (0.3 MHz)



Increase frequency scan granularity INFN

e Heating of the trap: limits on injected microwave

power and irradiation time 64 miW
° 32 mW
o Toincrease spin-flip probability near B . , flatten ~ ~
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Modelling the signal

Extract frequency shift between annihilation
signals for the two transitions

Depletion distributions resulting from

(@)
(@)
(@)

structure of the non-uniform trapping field
local microwave power seen by the atoms
motional broadening effects — 0(10 kHZ), not
relevant in 2017 analysis

Empiric model informed by simulation —
largest source of systematic uncertainty 1.
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Orbits of the atoms through the magnetic field
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Better control of magnet operations and characterization INEN
PISA
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Approaching a 10 kHz HFS-1S measurement at 1T o AR
—_ fa"g f
e A 50x improvement w.r.t. previous measurement %284616{
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Implications for CPT tests? @

o f . isnot sensitive to SME, but f_ or -
equwalently f.. (NMR) are

o f_verycha englng
S f . requires new hardware

energy

e Experiment in intense inhomogeneous

magnetic fields
o  Extrapolations
o  Systematic effects

1281/7 B
R N T

| 1.42 GHz
F=0

e Solution 1: measure hydrogen under the same
conditions

e Solution 2: measure several transitions with
similar precision
o Monitor magnetic field (f, )

o Validate control of systemvatm effects (f,,)
o  Measure CPTV-sensitive process (e.g., fNMR)
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Outlook: antihydrogen hyperfine structure in ALPHA-g INFN

PISA

e We have just started experimenting with a vertical trap in ALPHA

vvvvvvvvvvvvvvvvvvvvv

f\\ e Plan to include a resonator to drive NMR d-c transition
AN o Broad maximum at 0.65 T (f, = 654.9),10-5-107 precision within reach
T T2 o Remove [c> population, excite |d> — |c>, observe regenerated |c> population
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The ALPHA Collaboration INFN
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23 state hyperfine splitting @

o D, =8f . (25) - f . (1S) — Nuclear size effects cancel out
e (Combine optical measurement of 1S-2S (for each component) with HFS1S
o HFS2S=(177.6 +/-05) MHz

f2 — £ = L(HFS1S — HFS28) + 22, (28) — 1. (19)) 2
e 254
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Implications for other measurements ZNER

o First measurement in ALPHA-g: balance gravity with
magnetic field

o a,=[0.J5¢0.13 (statistical + systematic) = 0.16 (simulation)] g _3__0190'09

o Limited by control and characterization of magnetic field 747 = —2.0g
e PSR transitions can be part of the toolbox -

o state selection £ 75

o in-situ magnetometry g 50

3 2 .
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