Electroweak Observables in Neutrino-Electron Scattering at a TeV Muon Storage Ring

2505.00152

André de Gouvêa, <u>Adrian Thompson</u>

CIPANP 2025 - UW Madison

June 4, 2025

EvES as a Neutrino Microscope

Elastic neutrino-electron scattering (EvES)

- Purely weak process (at tree level) only W, Z exchange
- Depends on the SM weak charges $(g_{L,R}^{f})$ and the weak mixing angle $sin^{2}\theta_{W}$
- Complements other measurements of the Weak Mixing Angle

$$g_L^f = T_3^f - Q^f sin^2 \theta_W$$

Bardin, Bilenky, Pontecorvo `70 't Hooft `71 Chen, Lee `72 Sehgal `74

A. Thompson

CIPANP 2025 - June 11, 2025

Probes of the Weak Mixing Angle

 $A_{\mu} = B_{\mu}^{0} \cos \theta_{W} + W_{\mu}^{0} \sin \theta_{W}$ $Z_{\mu} = W_{\mu}^0 \cos \theta_W - B_{\mu}^0 \sin \theta_W.$

 e^{-}

 ν_e

 \mathcal{V}_{e}

 Z^0

 ν_e

 ν_e

 W^+

Muon Decay

 $\mu^+ \to e^+ \bar{\nu}_\mu \nu_e$ $\mu^- \to e^- \bar{\nu}_e \nu_\mu$

Weak charged current process, known to 1 part in 10⁶ Muon Decay

Elastic Neutrino-Elastic Scattering (EvES)

 $\mu^+ \to e^+ \bar{\nu}_\mu \nu_e$ $\mu^- \to e^- \bar{\nu}_e \nu_\mu$

 $\nu_{\alpha} e^- \rightarrow \nu_{\alpha} e^-$

 $\bar{\nu}_{\alpha} e^{-} \rightarrow \bar{\nu}_{\alpha} e^{-}$

Weak charged current process, known to 1 part in 10⁶

Exclusively weak process at tree level

TeV-scale Muon Colliders and Neutrino Factories

- Several designs and inspiring
- Nu Factory concepts:
- NuSOnG [<u>0803.0354</u>]
- IMCC Report [<u>2407.12450</u>], [<u>2504.21417</u>]
- MAP [<u>0711.4275]</u>
- µTRISTAN [2201.06664]

ACCELERATORS | FEATURE

CERN Courier, '99

Muon ring could act as a neutrino factory

27 June 1999

Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

T. Adams⁵, P. Batra³, L. Bugel³, L. Camilleri³, J.M. Conrad³, A. de Gouvêa¹¹, P.H. Fisher⁸, J.A. Formaggio⁸, J. Jenkins¹¹, G. Karagiorgi³, T.R. Kobilarcik⁴, S. Kopp¹⁵, G. Kyle¹⁰, W.A. Loinaz¹, D.A. Mason⁴, R. Milner⁸, R. Moore⁴, J. G. Morfín⁴, M. Nakamura⁹, D. Naples¹², P. Nienaber¹³, F.I Olness¹⁴, J.F. Owens⁵, S.F. Pate¹⁰, A. Pronin¹⁶, W.G. Seligman³, M.H. Shaevitz³, H. Schellman¹¹, I. Schienbein⁷, M.J. Syphers⁴, T.M.P. Tait^{2,11}, T. Takeuchi¹⁶, C.Y. Tan⁴, R.G. Van de Water⁶, R.K. Yamamoto⁸, J.Y. Yu¹⁴

Neutrino Physics at a Muon Collider

Bruce J. King

Brookhaven National Laboratory email: bking@bnl.gov

The "Neutrino Slice"

The Neutrino Slice at Muon Colliders

Luc Bojorquez-Lopez,^{1,*} Matheus Hostert,^{1,†} Carlos A. Argüelles,^{1,‡} and Zhen Liu^{2,§}

¹Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA ²School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA (Dated: December 19, 2024)

Neutrino rates are sizeable! [2412.14115]

Neutrino Fluxes from Muon Decay in the Lab Frame

Neutrino beam divergence out of the plane of the ring is small

A. FISHER/SCIENCE

V

Nominal bunch intensity: $\sim 10^{12} \mu$

Circulation rate: $\sim 30 \text{ kHz}$

μ

Bird's Eye View

From geometry, the acceptance is:

$$F_{\mu,\text{useful}} \approx \frac{w}{2\pi d}$$

 $N_{\nu,\text{accept}} = F_{\mu,\text{useful}} N_{\mu,\text{decays}}$

Bird's Eye View

Example Assumptions:

• 10 km circumference (R=1.6 km)

• *d*=1.7 km

- w=20 m diameter
- $\rightarrow F_{\mu, useful} \approx 0.2\%$
- ~9×10¹⁹ muons per year in the ring:
- 2×10¹⁸ neutrinos in detector volume / 10 years
- Consider E_{μ} =250 GeV, 1.5 TeV, 5 TeV
- Detector density: $\sim 10^{24}$ e- / cm³

EvES from a High Energy Muon Decay Source

$$\frac{d\sigma_{\nu_{\alpha}}}{dE_{r}} = 2\frac{G_{F}^{2}m_{e}}{\pi} \Big[(g_{L} + \delta_{e\alpha})^{2} + (g_{R})^{2} \Big(1 - \frac{E_{r}}{E_{\nu}} \Big)^{2} - (g_{L} + \delta_{e\alpha})g_{R}\frac{m_{e}E_{r}}{E_{\nu}^{2}} \Big]$$

$$\frac{d\sigma_{\bar{\nu}_{\alpha}}}{dE_{r}} = 2\frac{G_{F}^{2}m_{e}}{\pi} \Big[(g_{R})^{2} + (g_{L} + \delta_{e\alpha})^{2} \Big(1 - \frac{E_{r}}{E_{\nu}} \Big)^{2} - (g_{L} + \delta_{e\alpha})g_{R}\frac{m_{e}E_{r}}{E_{\nu}^{2}} \Big]$$
Weak couplings in the SM:

$$g_{L} \equiv 2g_{L}^{\nu}g_{R}^{e^{-}} = \sin^{2}\theta_{W} - \frac{1}{2}$$
Integrate over the EvES cross sections for both muon decay fluxes:

$$\frac{d^2 N_{\nu_{\alpha},\bar{\nu}_{\alpha}}}{dE_r dt} = N_{\mu} \times F_{\mu,\text{useful}} \times (n_e w) \times \int_{y_{\min}}^{1} \int_{0}^{2\pi} \int_{\cos\theta_{\min}}^{1} \frac{\partial^2 N_{\nu_{\alpha},\bar{\nu}_{\alpha}}}{\partial y \partial \Omega} \frac{d\sigma_{\nu_{\alpha},\bar{\nu}_{\alpha}}}{dE_r} d(\cos\theta) \, d\phi \, dy$$
Det. electron density and path length
A. Thompson
CIPANP 2025 - June 11, 2025

Accessing the running of $sin^2\theta_W$

 $Q = \sqrt{2 m_e E_r}$

As the muon beam energy reaches ~TeV scales, we access:

- "shoulder" of the running momentumdependence of the WMA
- NuTeV anomaly region

Rates and backgrounds

	$N_{\nu_{\alpha}}, N_{\bar{\nu}_{\alpha}}$	$N(\nu_{\mu})$	$N(\bar{\nu}_e)$	$N(\bar{\nu}_{\mu})$	$N(\nu_e)$	$\langle Q \rangle_{\mu^-,\mu^+} [\text{GeV}]$	$\sin^2\theta_W(\langle Q\rangle)_{\mu^-,\mu^+}$
$E_{\mu} = 0.25 \text{ TeV}$		0.24×10^{6}	0.48×10^{6}	0.2×10^6	1.08×10^{6}	0.262,0.296	0.2374, 0.2373
$E_{\mu} = 1.5 \text{ TeV}$	2×10^{18}	1.4×10^{6}	2.78×10^6	1.24×10^6	6.56×10^6	0.482,0.538	0.237,0.2369
$E_{\mu} = 5 \text{ TeV}$		4.64×10^{6}	9.28×10^6	4.2×10^6	22.0×10^{6}	0.879, 0.981	0.2365,0.2364

- Tens of millions of EvES events / 10 years
 - \sim 1 event / 30 seconds
- ~ 1000 times larger CC and NC scattering rate
 - $\rightarrow \sim 30$ events / second
- CC and NC scattering have high hadronic activity
- Need good timing resolution!

First test: Weak Couplings g_V , g_A

Bin over electron recoil energy

 $\chi^2_{\rm MC} \equiv \chi^2_{\mu^+} + \chi^2_{\mu^-}$

$$g_V \equiv (g_L + g_R)$$

 $g_A \equiv (g_L - g_R)$

$$\begin{split} g_V^{\text{null}} &= -\frac{1}{2} + 2\sin^2\theta_W(\langle Q \rangle) \\ g_A^{\text{null}} &= -\frac{1}{2} \,. \end{split}$$

CIPANP 2025 - June 11, 2025

Flavor non-universal Weak Couplings of the Neutrinos $-E_{\mu} = 250 \text{ GeV}$

Null hypothesis:

Background-free EvES spectra with fixed

 $sin^2 \theta_W(\langle Q \rangle)$ for each E_{μ} benchmark

$$g_L \equiv 2g_L^{\nu_e} g_L^{e^-}, \quad g_R \equiv 2g_L^{\nu_e} g_R^{e^-}$$

 $g_L \equiv 2g_L^{\nu_\mu} g_L^{e^-}, \quad g_R \equiv 2g_L^{\nu_\mu} g_R^{e^-}$

See e.g., Giunti, Studenikin [0812.3646] Abraham, Foroughi-Abari, Kling, Tsai, [2301.10254] Brdar, Ferreira-Leite, Parker, Xu, [2410.00107]

Method I: *Q*-binned Extraction of $sin^2\theta_W$

A. Thompson

Method I: *Q*-binned Extraction of $sin^2\theta_W$

[2405.09416]

A. Thompson

CIPANP 2025 - June 11, 2025

[2405.09416]

A. Thompson

CIPANP 2025 - June 11, 2025

Method II: Affine running hypothesis

Method II: Affine running hypothesis

CIPANP 2025 - June 11, 2025

Takeaways and future work

- The MC comes as a Neutrino Factory for free we can put the neutrino under a microscope!
- Electroweak observables <1% precision with neutrino scattering

Future work:

- Beam polarization impact, profile (wigglers?)
- Detector location optimization, timing, reconstruction
- Backgrounds
- Other channels offer exciting physics targets:
 - Neutrino Tridents \rightarrow degeneracy breaking of weak couplings
 - Inverse Tau/Muon Decay (QEvES) \rightarrow Charged lepton flavor violation
 - CC/NC DIS \rightarrow checking the NuTeV channels
- Neutrino scattering at NLO: full radiative correction picture

Backup Deck

QEvES / "Induced Lepton Decay"

QEvES / "Induced Lepton Decay"

Neutrino Beamspot Geometry

Bird's Eye View

Neutrino Charge Radius

$$\Lambda_{\mu} = f_{Q}(q^{2})\gamma_{\mu} + \cdots$$

$$\langle r^{2} \rangle \equiv 6 \frac{d \mathbb{f}_{Q}(q^{2})}{dq^{2}} \Big|_{q^{2}=0}$$

$$g_{L,R} \rightarrow g_{L,R} + \frac{1}{3}m_{W}^{2} \langle r_{\nu_{\alpha}}^{2} \rangle \sin^{2} \theta_{W}$$
SM prediction \cong

$$\langle r_{\nu_{\alpha}}^{2} \rangle_{\text{SM}} = \frac{G_{F}}{4\sqrt{2}\pi^{2}} \left(3 - 2\log\frac{m_{\alpha}^{2}}{m_{W}^{2}}\right)$$

See e.g., Giunti, Studenikin [0812.3646] Abraham, Foroughi-Abari, Kling, Tsai, [2301.10254] Brdar, Ferreira-Leite, Parker, Xu, [2410.00107]

Degeneracies across 4 parameters

A. Thompson

CIPANP 2025 - June 11, 2025

Hunting for New Gauge forces in the running

Davoudiasl et al 2309.04060