Nuclear Recoil in CCDs

CIPANP - 2025 Vijay Azad (U.Chicago) for the DAMIC-M collaboration

The National Science Foundation

FONDS NATIONAL SUBSE SCHWEIZERISCHER NATIONALFONDS FONDD NATIONALE SVIZZERG SWISS NATIONAL SCIENCE FOUNDATION

Overview

- Introduction to CCDs
- Nuclear recoil ionization efficiency measurement
- Nuclear recoil identification experiment
- Exploration

Scientific Charge-Coupled Devices (CCDs)

- A CCD is a silicon substrate detector that can detect charge excitations in the substrate due to a energy deposition.
- Skipper CCDs implements multiple Non-Destructive Charge Measurements (NDCMs or skips) leading to single electron resolution
- The pixel readout noise decreases by the square root of the number of NDCMs

See plenary talk by P.Privitera

Nuclear Recoils in CCDs

Nuclear Recoil Ionization Efficiency

- → Theoretical models (Lindhard etc.,) fail at energies < 20 keV_{nr}
- → Previous measurement with a conventional CCD was performed by Chavarria et al.(2016), with a threshold of 60 eV_{ee}

- → Elastic scattering of neutral particles from silicon nuclei, after a certain threshold energy, produces ionization electrons.
- → Relationship between nuclear recoil energy and energy of ionization is referred to as ionization efficiency

Nuclear Recoil Ionization Efficiency Measurement

1k x 6k skipper CCD

Beryllium Oxide holder

- A ¹²⁴Sb-⁹Be photoneutron source was used to produce mono-energetic neutrons (~23 keV)
- Antimony (¹²⁴Sb) pellets were activated (~5.4 mCi) to produce 1.69MeV gammas (47%)
- The ¹²⁴Sb source was placed inside a BeO holder that will emit neutrons
- ${}^{9}\text{Be} + \gamma \rightarrow {}^{8}\text{Be} + n \ (\sim 23 \text{ keV})$

- The source was placed inside a lead castle to shield the CCD from gammas.
- ★ The BeO holder was interchanged with an Aluminum holder to collect the gamma background data without neutrons
- ★ Neutron flux around the setup was measured using a ³He counter.

Data

- 1600 NDCMs
- 4x4 Binning
- Image size : 250 rows, 275 columns
- Resolution : ~0.15 e-
- ¹²⁴Sb in BeO (neutrons + gammas) : exposure = 35.84 days
- ¹²⁴Sb in AI (only gammas) : exposure = 13.10 days
- Ambient background with no ¹²⁴Sb source was also collected

Simulations

Nuclear recoil energies at the CCD are simulated with the complete geometry using MCNP and GEANT4 independently

Neutron flux around the setup was measured using a ³He counter and verified by MCNP simulations

Results

- We use a data-driven iterative procedure to map the subtracted ionization spectrum to the simulated recoil energies.
- Model Independent MCMC was used to independently verify the ionization efficiency.

Nuclear Recoil Identification

→ Identification of defects in correlation with location of nuclear recoil events can help uniquely identify nuclear recoils events.

- → Sometimes nuclear recoils result in defects in the crystal lattice.
- → These defects generate a leakage current when the CCD is at high temperatures

Measurement

Results

- We demonstrated that CCDs can distinguish between interactions with nuclei and electrons.
- We are exploring to extend sensitivity to sub-keV energies by optical stimulation
- This will allow DAMIC-M to perform ER and NR dark-matter searches independently, for significantly increased sensitivity and discovery potential.

Migdal Effect

- → Potential to measure migdal effect in CCDs, probing recoil energies < 0.3 keV_{nr} where the ionization efficiency goes to 0.
- Can look for L-step occurrence from migdal electrons
- Observation of the Migdal effect will allow us to re-interpret DAMIC-M results as the most stringent exclusion limits for DM-nucleus interactions for DM particles below 10s to 100 MeV

Status

- Nuclear recoil ionization efficiency of silicon CCD was measured down to 3 e⁻ ionization.
- Nuclear recoil events can be distinguished from electron recoil events via the observation of defects—with ~100% efficiency down to a few keV_{nr}.

Outlook

- Defect measurement can be made more efficient at lower energies by exploring IR irradiation as opposed to thermal cycling
- Potential to probe Migdal effect below 0.3 keV_{nr}.
- Potential to perform fano factor modelling using a neutron capture measurement setup.

Thank You

Questions?