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QCD phase diagram
 LQCD simulations allow to explore the phase diagram at low densities.
 Higher density regions based mostly on effective models.
 Some of them predict a first order transition line at higher densities.
 By lowering the collision energy, experiments can reach higher densities and look for signals of criticality. 
 At very high densities and low temperatures, we are in the realm of neutron stars.

LHC RHIC FAIR
NICERLIGO/VIRGO
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Phase diagrampQCD
BH

 To date, we cannot obtain information about the first-order transition line from first-principle QCD.
 LQCD only has predictive power at low densities (sign problem!!)
 PQCD is only valid at extreme values of temperature and/or density.
 To cover a large region of the phase diagram, we merge HRG and BH.

LQCD

HRG
For more about the phase diagram, see Joaquin Grefa’s talk, after coffee break. 3 / 25
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Quantum van der Waals (vdW) 
● Short-range repulsion due to the excluded volume procedure, 𝑉= 𝑉 -𝑏𝑁.
● Intermediate-range attraction, 𝑃 = 𝑃id - 𝑎𝑛2

Properties
● Reduces to the ideal quantum gas for 𝑎=0 and 𝑏=0.
● Positive entropy density and s=0 when T=0.Vovchenko, Anchishkin, Gorenstein, Phys. Rev. C 91 (2015), 064314 
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● The vdW parameters are fixed using nuclear ground-state properties 𝑎=329 MeV fm3 and 𝑏=3.42 fm3. 

Van der Waals HRG
Non-int mesons VdW baryons VdW antibaryons

Vovchenko, Gorenstein, Stoecker,  PRL 118 (2017), 182301 
Effective chemical potential
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● Nuclear liquid-gas transition at low temperature and high chemical potential, with a critical point at 𝑇𝑐 ≈19.7 MeV, 𝜇𝑐≈908 MeV.

Vovchenko, Gorenstein, Stoecker,  PRL 118 (2017), 182301 
 In this work, we use the model to describe the hadronic phase. 
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● Based on the AdS/CFT correspondence [J. Maldacena, Adv.Theor.Math.Phys. 2 (1998) 231-252]

● Action of a 5-dimensional gravitational theory. 
● In order to have an AdS/QCD correspondence, one needs to break conformal symmetry. 
● For that, an arbitrary potential 𝑉(𝜙) is introduced to break conformal symmetry
● Where 𝜙 is a dilaton field. 
● This action introduces an interaction term between the Maxwell action and dilaton field, 𝑓(𝜙), which produces a finite chemical potential in the dual QCD-like model.

Dewolfe, Gubser and Rosen, Phys. Rev. D 83, 086005 (2011) Newton constant
Maxwell action
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Parameters tuned to reproduce LQCD data at 𝜇B=0.

Refs:O DeWolfe et al.  Phys. Rev. D83 (2011), 086005.R Rougemont et al. JHEP 04 102 (2026).R. Critelli et al., Phys.Rev.D 96 (2017), 096026 9 / 25
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The holographic model predicts a critical point!!

 Grefa et al. Phys.Rev.D 104 (2021) 3, 034002 
● Limitation: BH exhibits poor behavior at low 𝘛 values!

Fix 𝑓(𝜙)
Fix 𝑉(𝜙)
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● To merge EoS that describe different phases, one must use an adequate switching function.
● One can choose a switching function explicitly dependent on 𝑇 and 𝜇, such as those proposed in 

Plot from Kapusta, Welle. Phys.Rev.C 106 (2022) 4, 044901It is smooth in the crossover region and very stiff at the first-order transition region! Previous versions in  Albright, Kapusta, Young. Phys.Rev.C 90 (2014) 2, 024915 and Plumberg, Welle, Kapusta PoS CORFU2018 (2018) 157.
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● We applied it twice to decrease the mixed region (making the switching function steeper in the first-order region).
● Applied on entropy, when applied on pressure, negative contribution from the switching funtion. 15 / 25
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Why merging entropy instead of pressure?
● The negative contribution of the term in red produces an artificial minimum in density, affecting other thermodynamic quantities. 
● Since the switching function depends explicitly on T and 𝜇B, it affects the thermodynamics!!
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● It will be useful as an input for heavy-ion collisions.
● The merged equation of state reproduces quite well the crossover region as well as the first-order region.
● Since the switching function depends on external parameters, it influences the thermodynamics, in particular, the higher-order derivatives.
● To get rid of noise, the numerics must be very precise, which is a computational challenge.
● Even though our merged EoS performs quite well, there are still details that need to be addressed. 
● We are working on obtaining smoother results for higher-order derivatives.
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Switching function 1(Kapusta)
J. Kapusta et al. Phys. Rev. C, 2022
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		LQCD simulations allow to explore the phase diagram at low densities.



		Higher density regions based mostly on effective models.



		Some of them predict a first order transition line at higher densities.



		By lowering the collision energy, experiments can reach higher densities and look for signals of criticality. 



		At very high densities and low temperatures, we are in the realm of neutron stars.
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3 / 25







Phase diagram











		To date, we cannot obtain information about the first-order transition line from first-principle QCD.



		LQCD only has predictive power at low densities (sign problem!!)

























3 / 25







Phase diagram













		To date, we cannot obtain information about the first-order transition line from first-principle QCD.



		LQCD only has predictive power at low densities (sign problem!!)













LQCD











3 / 25







Phase diagram









pQCD







		To date, we cannot obtain information about the first-order transition line from first-principle QCD.



		LQCD only has predictive power at low densities (sign problem!!)
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		PQCD is only valid at extreme values of temperature and/or density.



		To cover a large region of the phase diagram, we merge HRG and BH.
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		To date, we cannot obtain information about the first-order transition line from first-principle QCD.



		LQCD only has predictive power at low densities (sign problem!!)



		PQCD is only valid at extreme values of temperature and/or density.



		To cover a large region of the phase diagram, we merge HRG and BH.
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		To date, we cannot obtain information about the first-order transition line from first-principle QCD.



		LQCD only has predictive power at low densities (sign problem!!)



		PQCD is only valid at extreme values of temperature and/or density.



		To cover a large region of the phase diagram, we merge HRG and BH.
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For more about the phase diagram, see Joaquin Grefa’s talk, after coffee break.
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Hadron resonance gas model (HRG)



		In the ideal HRG, Hadrons are treated as non-interacting point-like particles.
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TexMaths28§latex§$P^{\rm{id}}_{}(T,\mu)= \sum_{i}\frac{g_i}{6\pi^2}\int_{0}^{\infty}\frac{k^2 dk}{e^{(E_i-\mu_i)/T}\pm 1}$§png§600§FALSE§Quantum van der Waals (vdW) 







		Short-range repulsion due to the excluded volume procedure, 𝑉= 𝑉 -𝑏𝑁.
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Vovchenko, Anchishkin, Gorenstein, Phys. Rev. C 91 (2015), 064314 
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		In order to have an AdS/QCD correspondence, one needs to break conformal symmetry. 



		For that, an arbitrary potential 𝑉(𝜙) is introduced to break conformal symmetry



		Where 𝜙 is a dilaton field. 



		This action introduces an interaction term between the Maxwell action and dilaton field, 𝑓(𝜙), which produces a finite chemical potential in the dual QCD-like model.
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		Limitation: BH exhibits poor behavior at low 𝘛 values!
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It is smooth in the crossover region and very stiff at the first-order transition region! 



Previous versions in  Albright, Kapusta, Young. Phys.Rev.C 90 (2014) 2, 024915 and Plumberg, Welle, Kapusta PoS CORFU2018 (2018) 157.
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		Applied on entropy, when applied on pressure, negative contribution from the switching funtion.
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		Since the switching function depends explicitly on T and 𝜇B, it affects the thermodynamics!!
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		To get rid of noise, the numerics must be very precise, which is a computational challenge.



		Even though our merged EoS performs quite well, there are still details that need to be addressed. 



		We are working on obtaining smoother results for higher-order derivatives.
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Ry = 14a(T)Q_ (T, u)— (\/A4+ +1)




Qs = {[(A2(T))2 + (T, )] /2 2

where
_ .u‘ — Hx (T)

T = o o (T)





P(T’.u‘) = PBG(TaH‘)R(T7H‘)
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