SLIDES-24-0291-PPD-V

NOVN

CIPANP 2025: 15th Conference on the Intersection of Particle and Nuclear Physics Madison, WI

latest Neutrino Oscillation Results from the NOvA Experiment Andrew Sutton

for the NOvA Collaboratio atcsutton@gmail.com Florida State University

Andrew Sutton

The NOvA experiment

- Long-baseline accelerator neutrino experiment based at Fermilab
- Two functionally equivalent tracking calorimeters in a narrow-band

The NuMI beam

- 39.1×10²⁰ analyzed POT so far
 - 10 years of running
- Typical beam power of ~900 kW
 - Record powers above 1 MW
- Selectable ν_{μ} or $\bar{\nu}_{\mu}$ beam
 - 93-95% purity

Andrew Sutton

The NOvA detectors

Andrew Sutton

- Extruded PVC cells filled with scintillating oil
- Looped wavelength shifting fiber viewed by an avalanche photodiode
- Alternating horizontal and vertical planes for 3D reconstruction

How we measure 3-flavor oscillations

- ND and FD are functionally identical
 - They share many systematic uncertainties (neutrino cross sections and beam flux)
- Use ND data to correct the ND simulation
 - Extrapolate corrected ND simulation to generate data-corrected FD predictions
 - Repeat for different combinations of oscillation parameters and fit

Andrew Sutton

(-) ν_{μ} survival

• Dip location depends on Δm_{32}^2

• Dip amplitude depends on θ_{23}

Andrew Sutton

- (-) ν_{ρ} appearance
- Compare neutrino and antineutrino oscillations
- Produces ellipses based on δ_{CP} and mass ordering
- With maximal mixing and vacuum oscillations the mass ordering and δ_{CP} choices create degeneracies

(-) ν_e appearance

- Matter effects and θ_{23} octant pulls the ellipses apart further splits the ellipses
- There are still degenerate regions near the middle

Andrew Sutton

Latest analysis additions

Low energy ν_e

- Previous analyses were restricted to E > 1 GeV
- ν_e samples act more like a counting experiment

Andrew Sutton

NOvA Simulation

Low energy ν_e

- Previous analyses were restricted to E > 1 GeV
- ν_{ρ} samples act more like a counting experiment
- More shape info available at lower energies
 - Improves mass ordering sensitivity by a few percent
 - But low statistics
 - No low energy events for antineutrino beam

Andrew Sutton

Detector modeling

- Imperfections in the models for neutron interactions and light production have been leading uncertainties
- New light tuning agrees much better with data
 - Combined fit to multiple ND samples
- Observed an over-simulation of neutron candidates

Andrew Sutton

2020 Analysis Uncertainties

The problem with neutrons

- To study neutrinos we need to know their incoming energy
- Neutrinos are neutral \rightarrow invisible until they interact \rightarrow sum energy of outgoing particles
- Neutrons are neutral \rightarrow can carry energy away unseen
- Our nuclear colleagues have done a great job with them, but generally at lower energies (from thermal to ~20 MeV)

Neutron selection

- Three main interaction modes
 - Elastic scattering: nuclear recoil energy is typically low
 - Inelastic scattering: produces photons and charged particles
 - Neutron capture: if they thermalize, on chlorine or hydrogen
- Developed a simple criteria to select neutron hit candidates
 - Many elastic scatters before producing visible particles
 - Hits should be > 20 cm from the neutrino interaction
 - A candidate should contain fewer than 6 hits
 - Selects visible neutrons with 71% efficiency and 61% purity

Andrew Sutton

	_
	- 1
	_
	-
	_
	-
	-
	—
	-
	-
	-
-	

Neutron over-simulation

- Base simulation produces up to 40% more neutrons as compared to data
 - De-excitation photons produced by neutron inelastic scattering (medium red) are concentrated at low energy where the simulation excess is the greatest

Alternative neutron inelastic model

- De-excitation photons produced by Geant4:
 - The HP model: determines outgoing particles based on measurements (limited data)
 - Intranuclear cascade: theory-driven and statistically determines outgoing particles while using the overall cross-section
- MENATE extends the ethos of the HP model to higher energies
 - But only for neutron-on-carbon interactions (that's what we have data for)
 - Limits n+¹²C to only 6 final inelastic states
 - Our implementation integrates directly with Geant4

Comparing to data

- MENATE reduces the over-simulation in the most populous bins
 - Photon production is significantly decreased
- It increases the over-simulation at higher energies
 - Proton production is slightly increased
- Overall, the data-simulation ratio is flatter, but there is still a significant over-simulation
 - Only addressing neutron-on-carbon; there are other targets and projectiles

Andrew Sutton

Sim

Dai

0.05

0.1 Prong Energy (GeV)

CIPANP 2025

0.15

0.15

Andrew Sutton

Andrew Sutton

CIPANP 2025

20

FD data

			v-beam
Sample	Num. Events	Background	40
$oldsymbol{ u}_{\mu}$	384	11.3	
$\overline{ u}_{\mu}$	106	1.7	14 12 12
${oldsymbol{ u}}_{ m e}$	181	61.7	nts / 0.1 GeV
$\overline{ u}_{ m e}$	32	12.2	
			0 _ 1

Andrew Sutton

 u_{μ}

CIPANP 2025

21

Frequentist results

NOvA Prelimin

Parameter	Best-fit	Normal Ordering	Preference
$\sin^2\left(heta_{23} ight)$	$0.546\substack{+0.032\\-0.075}$	W/ 1D Daya Bay	p-value 0
$\Delta m_{32}^2 (10^{-3} \mathrm{eV}^2)$	$2.433_{-0.036}^{+0.035}$	constraint	1.36
$\delta_{\mathrm{CP}}\left(\pi ight)$	0.875	W/2D Daya Bay constraint	p-value 0 1.57
 New rease 	result is a urements	consistent with s and other ex	n previc perime
 New research Preference Norm 	result is c urements the Upp al Mass (consistent with and other expectation of θ_{23} octant a Ordering	n previo perime and
 New measurement Prefer Norm Most 	result is c urements the Upp al Mass (precise s	consistent with and other experimentation of θ_{23} octant a Ordering	n previo perime and nent

Bayesian results

- Prefer CP conserving values of δ_{CP} in the normal mass ordering and CP violating values in the inverted
- Preference for Normal Mass Ordering and Upper θ_{23} Octant is enhanced by reactor constraints

NOvA Preliminary

Andrew Sutton

Bayesian results

- Prefer CP conserving values of δ_{CP} in the normal mass ordering and CP violating values in the inverted
- Preference for Normal Mass Ordering and Upper θ_{23} Octant is enhanced by reactor constraints

Andrew Sutton

NO preference at 87% posterior probability

Summary

- Most most precise single-experiment measurement of Δm_{32}^2
 - Now the most precisely measured oscillation parameter
- Slight preference for normal mass ordering and upper θ_{23} octant, but in a highly degenerate region
- We are analyzing results from a Test Beam run to help constrain our largest systematic uncertainty

• Newest NOvA results contain 2X more neutrino-mode data from 10 years of running

Summary

Andrew Sutton

Thanks!

This document was prepared by NOvA using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by FermiForward Discovery Group, LLC, acting under Contract No. 89243024CSC00002.

250 100 150 200 Total events - neutrino beam

Andrew Sutton

Backups

Neutrino Oscillations

- Neutrino are observed in "flavor states"
- Which are superpositions of "mass states
 - The mixing is described by the unitary matrix: U_{PMNS}
- As a neutrino propagates, the mass states interfere causing the flavor to change from one type to another
- Oscillations depend on:
 - Elements of U_{PMNS}
 - Distance of travel / neutrino energy
 - Mass (squared) splittings

$$(\nu_{e}, \nu_{\mu}, \nu_{\tau}) \qquad |\nu_{\alpha}(\mathbf{x}, t)\rangle = \sum_{i=1}^{3} U_{\alpha,i}^{*} |\nu_{i}(\mathbf{x}, t)\rangle$$

s'' $(\nu_{1}, \nu_{2}, \nu_{3}) \qquad |\nu_{\alpha}(\mathbf{x}, t)\rangle = \sum_{i=1}^{3} U_{\alpha,i}^{*} |\nu_{i}(\mathbf{x}, t)\rangle$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = f(U_{PMNS}, L/E, \Delta m_{ij}^2)$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

The PMNS Matrix

• With three flavor states and three mass states, U_{PMNS} is a 3 X 3 matrix

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} \\ 0 \\ -s_{13}e_{23} \end{pmatrix}$$

- Three mixing angles: θ_{12} , θ_{13} , θ_{23} ; and a (potentially) CP-violating phase: δ_{CP}
 - CP = charge inversion + parity inversion
 - Charge transformation: change particle to antiparticle (and vice versa)
 - Parity transformation: mirror all spatial coordinates

Andrew Sutton

 $\begin{array}{cccc} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ c_{12}e^{i\delta_{CP}} & 0 & c_{13} \end{array} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $c_{ii} = \cos \theta_{ii}, \ s_{ii} = \sin \theta_{ii}$

- CP violation in the neutrino sector might explain why the universe is matter-dominated

(-) ν_{ρ} appearance

- Oscillations in matter pull the ellipses apart
 - Due to coherent forward scattering on electrons
 - NO increases the neutrino oscillation probability and suppresses antineutrino oscillations
 - IO is reversed

Andrew Sutton

(-) ν_{ρ} appearance

• If θ_{23} does not produce maximal mixing then the choice of octant (< or > 45°) further splits the ellipses

There are still degenerate regions near the middle

Andrew Sutton

Neutron inelastic scattering

- Geant4 uses two models based on KE
 - Below 20 MeV: Data-driven "High precision"
 - 20 MeV-10 GeV: Intranuclear cascade
- NOvA uses the Bertini intranuclear cascade, which is split into sub-models
 - Nucleon-nucleon interactions: basically two-body

Andrew Sutton

Custom light model and electronics

Neutron inelastic scattering

- Geant4 uses two models based on KE
 - Below 20 MeV: Data-driven "High precision"
 - 20 MeV-10 GeV: Intranuclear cascade
- NOvA uses the Bertini intranuclear cascade, which is split into sub-models
 - Nucleon-nucleon interactions: basically two-body
 - Pre-equilibrium: balances the residual excitons

Andrew Sutton

Custom light model and electronics

Neutron inelastic scattering

- Geant4 uses two models based on KE
 - Below 20 MeV: Data-driven "High precision"
 - 20 MeV-10 GeV: Intranuclear cascade
- NOvA uses the Bertini intranuclear cascade, which is split into sub-models
 - Nucleon-nucleon interactions: basically two-body
 - Pre-equilibrium: balances the residual excitons
 - Evaporation: heavy particles first, then photons

Beam flux simulation

Neutrino interactions: GENIE

Andrew Sutton

Selecting neutrons

- Frequent elastic scattering means neutron-related-hits are typically far from the neutrino interaction vertex
 - Select only hit clusters that are > 20 cm away
- Neutron energy depositions are not highly correlated to their kinetic energies
 - Typically leave only a few visible hits
 - Require hit clusters to have fewer than 6 hits

Selection results

- Apply NOvA's standard $\bar{\nu}_{\mu}$ selection at the ND then perform neutron selection
 - 71% efficiency for selecting visible neutrons
 - Selected sample is 61% pure

Andrew Sutton

36

Selection results

- Apply NOvA's standard $\bar{\nu}_{\mu}$ selection at the ND then perform neutron selection
 - 71% efficiency for selecting visible neutrons
 - Selected sample is 61% pure
- Simulation is broken down by particle type
 - Red shades are particles associated with a primary neutron
 - Blue shades are contamination from other primary particles
- Significant data-simulation discrepancy
 - Up to 40% in the lowest energy bins

Andrew Sutton

37

What's causing the discrepancy?

- De-excitation photons produced by neutron inelastic scattering (medium red) are concentrated at low energy where the simulation excess is the greatest
- We trained a neural network to identify neutron-daughter particle types
 - Over-simulation "follows" the photons

Alternative neutron inelastic model

- De-excitation photons produced by Geant4:
 - The HP model: determines outgoing particles based on measurements (limited data)
 - Intranuclear cascade: theory-driven and statistically determines outgoing particles while using the overall cross-section Z. Kohley, et al. DOI: 10.1016/
- "MENATE" extends the ethos of the HP model to higher energies
 - But only for neutron-on-carbon interactions (that's what we have data for)
 - Limits n+¹²C to only 6 final states
 - Our implementation integrates directly with Geant4

Comparing to data

- MENATE reduces the over-simulation in the most populous bins
 - Photon production is significantly decreased
- It increases the over-simulation at higher energies
 - Proton production is slightly increased
- Overall, the data-simulation ratio is flatter, but there is still a significant over-simulation
 - Only addressing neutron-on-carbon; there are other targets and projectiles

Comparing to data

- MENATE reduces the over-simulation in the most populous bins
 - Photon production is significantly decreased
- It increases the over-simulation at higher energies
 - Proton production is slightly increased
- Overall, the data-simulation ratio is flatter, but there is still a significant over-simulation
 - Only addressing neutron-on-carbon; there are other targets and projectiles
 - Large uncertainties on neutron production
 - This would produce a "normalization" discrepancy

Numu Ehad Quants

Andrew Sutton

Freq. Uncertainties

Detector Calibration

Neutrino Cross Sections

Lepton Reconstruction

Detector Response

Neutron Uncertainty

Near-Far Uncor

Beam Flux

Total syst. error

Statistical error

Andrew Sutton

Bayesian results

• Prefer CP conserving values of δ_{CP} in the normal mass ordering and CP violating values in the inverted

- degenerate region
- reactor constraints

Andrew Sutton

NOvA Preliminary

CIPANP 2025

 π

 δ_{CP}

<u>3π</u>

2

Andrew Sutton

CP Violation

- The Jarlskog invariant is a parameterizationindependent measure of CP violation
 - $J = 0 \rightarrow CP$ -conservation
 - $J \neq 0 \rightarrow CP$ -violation
- Choice of prior
 - Flat in $\sin \delta_{CP}$ provides data-only preference
 - Flat in δ_{CP} (theoretically motivated) is biased away from minimal-CP-violation
 - Doesn't impact interpretation of result

Andrew Sutton

Andrew Sutton

3-Flavor Oscillations

Beyond Standard Oscillations

Nonstandard interactions

$\nu_{l}' \qquad \mathcal{H} = U\mathcal{H}_{0}U^{\dagger} + \sqrt{2}G_{F}n_{e} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^{*} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^{*} & \varepsilon_{e\tau}^{*} & \varepsilon_{e\tau\tau}^{*} \end{pmatrix}$

Credit: Symmetry magazine, Illustration by Sandbox Studio, Chicago with Ana Kova

Andrew Sutton

