



Exzellente Forschung für Hessens Zukunft

# AB INITIO CALCULATIONS ON NEUTRINOLESS DOUBLE-BETA DECAY

Lotta Jokiniemi (she/her)

Institut für Kernphysik, Theoriezentrum, TU Darmstadt



CIPANP 2025, Wisconsin-Madison



# **DOUBLE-BETA DECAY**



Institut für Kernphysik, Theoriezentrum | TU Darmstadt | L. Jokiniemi













- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles





- Violates lepton-number conservation
- Requires that neutrinos are Majorana particles
- If observed,  $t_{1/2}^{0\nu} \gtrsim 10^{25}$  years





Violates lepton-number conservation  $(A,Z) \rightarrow (A,Z+2) + 2e^{-+2\nu}$  Requires that neutrinos are Majorana particles If observed,  $t_{1/2}^{0\nu} \gtrsim 10^{25}$  years  $(t_{1/2}^{2\nu} \approx 10^{20} \text{ years, Age of the Universe } \approx 10^{10} \text{ years)}$ W $W^{\text{-}}$  $n^{d}_{u}$ 











 Light-neutrino exchange the most commonly studied mechanism





- Light-neutrino exchange the most commonly studied mechanism
  - Does not require introducing additional particles





- Light-neutrino exchange the most commonly studied mechanism
  - Does not require introducing additional particles
- Other exchange mechanisms (sterileneutrino, scalar, ...) are also possible





- Light-neutrino exchange the most commonly studied mechanism
  - Does not require introducing additional particles
- Other exchange mechanisms (sterileneutrino, scalar, ...) are also possible

See talk by S. Urrutia Quiroga later in this session





- Light-neutrino exchange the most commonly studied mechanism
  - Does not require introducing additional particles
- Other exchange mechanisms (sterileneutrino, scalar, ...) are also possible

See talk by S. Urrutia Quiroga later in this session

In this talk, I will focus on the light-neutrino exchange





# HALF-LIFE OF $0\nu\beta\beta$ DECAY $\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M^{0\nu}|^2$

 $m_{\beta\beta}$ 



# HALF-LIFE OF $0\nu\beta\beta$ decay

Half-life to be measured

 $\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G^{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$ 



Phen.

Shickele, Jokiniemi, Belley, Holt, in preparation

 $10^{-2}$ 

 $m_{lightest}$  [eV]



 $10^{-3}$ 

Normal

Hierarchy

10-3

Ab Initio



Phen.

Shickele, Jokiniemi, Belley, Holt, in preparation

 $10^{-2}$ 

 $m_{lightest}$  [eV]



Normal

 $10^{-3}$ 

Hierarchy

 $10^{-3}$ 

Ab Initio









Institut für Kernphysik, Theoriezentrum | TU Darmstadt | L. Jokiniemi







$$M^{0\nu} = \langle \Psi_f^{(A)} | \mathcal{O}^{0\nu} | \Psi^{(A)_i} \rangle$$



Operator (nn 
$$\rightarrow$$
 pp+2e<sup>-</sup>)  
 $M^{0\nu} = \langle \Psi_f^{(A)} | \mathcal{O}^{0\nu} | \Psi^{(A)_i} \rangle$ 















$$M^{0\nu} = M_{\rm GT}^{0\nu} - \left(\frac{g_{\rm v}}{g_{\rm A}}\right)^2 M_{\rm F}^{0\nu} + M_{\rm T}^{0\nu}$$



























# **LACK OF RELIABLE UNCERTAINTIES**



#### Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)



# **LACK OF RELIABLE UNCERTAINTIES**



#### Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)



# **LACK OF RELIABLE UNCERTAINTIES**



#### Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)


#### LACK OF RELIABLE UNCERTAINTIES



#### Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)





11.06.2025

Institut für Kernphysik, Theoriezentrum | TU Darmstadt | L. Jokiniemi





Figure courtesy of P. Navrátil





Figure courtesy of P. Navrátil

H. Hergert, Front. Phys. 8 (2020)





Figure courtesy of P. Navrátil

H. Hergert, Front. Phys. 8 (2020)



"... we interpret the **ab initio** method to be a **systematically improvable** approach for **quantitatively** describing nuclei using the **finest resolution scale possible** while **maximizing its predictive capabilities**"

Ekström, Forssén, Hagen, Jansen, Jiang, and Papenbrock, Front. Phys. 11, 1129094 (2023)



#### AB INITIO BENCHMARKS IN LIGHT NUCLEI



Yao, Belley, Wirth, Miyagi, Payne, Stroberg, Herbert, Holt, Phys. Rev. C 103, 014315 (2021)



# AB INITIO RESULTS FOR <sup>48</sup>CA, <sup>76</sup>GE, <sup>82</sup>SE



Belley, Payne, Stroberg, Miyagi, Holt, Phys. Rev. Lett. 126, 042502 (2021)



# AB INITIO RESULTS FOR <sup>48</sup>CA, <sup>76</sup>GE, <sup>82</sup>SE



Institut für Kernphysik, Theoriezentrum | TU Darmstadt | L. Jokiniemi



# AB INITIO RESULTS FOR <sup>48</sup>CA, <sup>76</sup>GE, <sup>82</sup>SE



Institut für Kernphysik, Theoriezentrum | TU Darmstadt | L. Jokiniemi



# CHIRAL EFFECTIVE THEORY OPERATORS FOR $0\nu\beta\beta$ decay



Cirigliano, Dekens, de Vries, Graesser, Mereghetti, JHEP 12, 097 (2018)



# CHIRAL EFFECTIVE THEORY OPERATORS FOR $0\nu\beta\beta$ decay

$$M^{0\nu} = M_{\rm L}^{0\nu}$$





V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)



#### CHIRAL EFFECTIVE THEORY OPERATORS FOR $0\nu\beta\beta$ DECAY $M^{0\nu} = M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}$



V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)



# CHIRAL EFFECTIVE THEORY OPERATORS FOR $0\nu\beta\beta$ decay



 $M^{0\nu} = M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu} + M_{\rm usoft}^{0\nu}$ 

V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)



# CHIRAL EFFECTIVE THEORY OPERATORS FOR $0\nu\beta\beta$ decay



V. Cirigliano et al., Phys. Rev. Lett. 120, 202001 (2018), Phys. Rev. C 100, 055504 (2019)

Institut für Kernphysik, Theoriezentrum | TU Darmstadt | L. Jokiniemi



$$M_{\rm S}^{0\nu} = 2 \frac{g_{\nu}^{\rm NN}}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$





$$M_{\rm S}^{0\nu} = 2 g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

• New, **unknown**, low-energy constant  $g_{\nu}^{NN}$ 





$$M_{\rm S}^{0\nu} = 2 g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- New, **unknown**, low-energy constant  $g_{\nu}^{NN}$
- What to do?





$$M_{\rm S}^{0\nu} = 2\mathbf{g}_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- New, **unknown**, low-energy constant  $g_{\nu}^{NN}$
- What to do?







$$M_{\rm S}^{0\nu} = 2\mathbf{g}_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- New, **unknown**, low-energy constant  $g_{\nu}^{NN}$
- What to do?



- Determine from lattice QCD
- Cirigliano, Davoudi, Engel, Furnstahl, Hagen et al., J. Phys. G. Nucl. Part. Phys. 49, 120502 (2022)





$$M_{\rm S}^{0\nu} = 2\mathbf{g}_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- New, **unknown**, low-energy constant  $g_{\nu}^{NN}$
- What to do?



- Fit to lepton-number violating data
- Determine from lattice QCD

 $C_1 + C_2$ 

Cirigliano, Davoudi, Engel, Furnstahl, Hagen et al., J. Phys. G. Nucl. Part. Phys. 49, 120502 (2022)

Fit to charge-independence breaking (CIB) term of NN scattering:

Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)



$$M_{\rm S}^{0\nu} = 2\mathbf{g}_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- New, **unknown**, low-energy constant  $g_{\nu}^{NN}$
- What to do?



- Fit to lepton-number violating data
- Determine from lattice QCD
- Cirigliano, Davoudi, Engel, Furnstahl, Hagen et al., J. Phys. G. Nucl. Part. Phys. 49, 120502 (2022)

Fit to charge-independence breaking (CIB) term of *NN* scattering:  $C_1 \sim \frac{C_1 + C_2}{C_{\text{IB}}} = C_{\text{CIB}}$ 

Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)





$$M_{\rm S}^{0\nu} = 2 \frac{g_{\nu}^{\rm NN}}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$



Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)



$$M_{\rm S}^{0\nu} = 2 g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

• Ab initio calculations show a ~ 10% - 60% enhancement of the nuclear matrix elements of light nuclei ( $A \le 12$ ) Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)



Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)



$$M_{\rm S}^{0\nu} = 2g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- Ab initio calculations show a ~ 10% 60% enhancement of the nuclear matrix elements of light nuclei ( $A \leq 12$ ) Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)
- Nuclear shell model & pnQRPA predict  $\sim 15\% 50\%$  &  $\sim 30\% 80\%$  enhancements in A = 48...136 nuclei



Jokiniemi, Soriano, Menéndez, Phys. Lett. B 823, 136720 (2021)



$$M_{\rm S}^{0\nu} = 2g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- Ab initio calculations show a ~ 10% 60% enhancement of the nuclear matrix elements of light nuclei ( $A \le 12$ ) Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)
- Nuclear shell model & pnQRPA predict  $\sim 15\% 50\%$  &  $\sim 30\% 80\%$  enhancements in A = 48...136 nuclei

Jokiniemi, Soriano, Menéndez, Phys. Lett. B 823, 136720 (2021)

 IM-GCM study shows a 43(7)% enhancement in <sup>48</sup>Ca Wirth, Yao, Hergert, Phys. Rev. Lett. 127, 242502 (2021)





$$M_{\rm S}^{0\nu} = 2g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- Ab initio calculations show a ~ 10% 60% enhancement of the nuclear matrix elements of light nuclei ( $A \leq 12$ ) Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)
- Nuclear shell model & pnQRPA predict  $\sim 15\% 50\%$  &  $\sim 30\% 80\%$  enhancements in A = 48...136 nuclei

Jokiniemi, Soriano, Menéndez, Phys. Lett. B 823, 136720 (2021)

- IM-GCM study shows a 43(7)% enhancement in <sup>48</sup>Ca Wirth, Yao, Hergert, Phys. Rev. Lett. 127, 242502 (2021)
- NSM with generalized contact formalism gives ~ 25% 60%
   enhancement in <sup>48</sup>Ca, <sup>76</sup>Ge, <sup>130</sup>Te, and <sup>136</sup>Xe
   Weiss, Soriano, Lovato, Menéndez, Wiringa, Phys. Rev. C 106, 065501 (2022)





$$M_{\rm S}^{0\nu} = 2g_{\nu}^{\rm NN} \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) \, e^{-q^2/(2\Lambda^2)} \, q^2 \mathrm{d}q \, | \, 0_i^+ \rangle$$

- Ab initio calculations show a ~ 10% 60% enhancement of the nuclear matrix elements of light nuclei ( $A \le 12$ ) Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck, Phys. Rev. Lett. 120, 202001 (2018)
- Nuclear shell model & pnQRPA predict  $\sim 15\% 50\%$  &

 $\sim 30\% - 80\%$  enhancements in A = 48...136 nuclei Jokiniemi, Soriano, Menéndez, Phys. Lett. B 823, 136720 (2021)

- IM-GCM study shows a 43(7)% enhancement in <sup>48</sup>Ca Wirth, Yao, Hergert, Phys. Rev. Lett. 127, 242502 (2021)
- NSM with generalized contact formalism gives ~ 25% 60%
   enhancement in <sup>48</sup>Ca, <sup>76</sup>Ge, <sup>130</sup>Te, and <sup>136</sup>Xe
   Weiss, Soriano, Lovato, Menéndez, Wiringa, Phys. Rev. C 106, 065501 (2022)
- VS-IMSRG shows ~ 40% 90% enhancement in <sup>76</sup>Ge, <sup>130</sup>Te, and <sup>136</sup>Xe
   Belley, Yao, Bally, Pitcher, Engel, Phys. Rev. Lett. 132, 182502 (2024)
   Belley, Miyagi, Stroberg, Holt, arXiv:2307.15156





$$M_{\rm loop}^{0\nu} = \frac{4R}{\pi g_{\rm A}^2} \langle f | \sum_{a,b} \tau_a^- \tau_b^- \int dq \ q^2 e^{-q^2/2\Lambda^2} j_u(qr) V_{\nu,2}^{(a,b)} | i \rangle$$

المستحد والمحافظ والم





$$M_{\text{loop}}^{0\nu} = \frac{4R}{\pi g_{\text{A}}^2} \langle f | \sum_{a,b} \tau_a^- \tau_b^- \int dq \ q^2 e^{-q^2/2\Lambda^2} j_u(qr) V_{\nu,2}^{(a,b)} | i \rangle$$
  
With  $V_{\nu,2} = V_{\text{VV}}^{(a,b)} + V_{\text{AA}}^{(a,b)} + \ln \frac{m_\pi^2}{\mu_{\text{us}}^2} V_{\text{usoft}}^{(a,b)} + V_{\text{CT}}^{(a,b)}$ 





$$M_{\text{loop}}^{0\nu} = \frac{4R}{\pi g_{\text{A}}^2} \langle f | \sum_{a,b} \tau_a^- \tau_b^- \int dq \ q^2 e^{-q^2/2\Lambda^2} j_u(qr) V_{\nu,2}^{(a,b)} | i \rangle$$
  
With  $V_{\nu,2} = V_{\text{VV}}^{(a,b)} + V_{\text{AA}}^{(a,b)} + \ln \frac{m_\pi^2}{\mu_{\text{us}}^2} V_{\text{usoft}}^{(a,b)} + V_{\text{CT}}^{(a,b)}$ 



• VMC study shows that the loops have a  $\leq 10 \%$  effect on the <sup>10</sup>He  $\rightarrow$  <sup>10</sup>Be transition

Pastore, Carlson, Cirigliano, Dekens, Mereghetti, Wiringa, Phys. Rev. C 97, 014606 (2018)



$$M_{\text{loop}}^{0\nu} = \frac{4R}{\pi g_{\text{A}}^2} \langle f | \sum_{a,b} \tau_a^- \tau_b^- \int dq \ q^2 e^{-q^2/2\Lambda^2} j_u(qr) V_{\nu,2}^{(a,b)} | i \rangle$$
  
With  $V_{\nu,2} = V_{\text{VV}}^{(a,b)} + V_{\text{AA}}^{(a,b)} + \ln \frac{m_\pi^2}{\mu_{\text{us}}^2} V_{\text{usoft}}^{(a,b)} + V_{\text{CT}}^{(a,b)}$ 

- VMC study shows that the loops have a  $\leq 10\%$  effect on the <sup>10</sup>He  $\rightarrow$  <sup>10</sup>Be transition Pastore, Carlson, Cirigliano, Dekens, Mereghetti, Wiringa, Phys. Rev. C 97, 014606 (2018)
- Nuclear shell model and pnQRPA confirm the <u>10 % effect in heavier nuclei (A=48...136)</u> Castillo, Jokiniemi, Menéndez, Phys. Lett. B 860, 139181 (2025)





Castillo, Jokiniemi, Menéndez, Phys. Lett. B 860, 139181 (2025)



$$M_{\text{loop}}^{0\nu} = \frac{4R}{\pi g_{\text{A}}^2} \langle f | \sum_{a,b} \tau_a^- \tau_b^- \int dq \ q^2 e^{-q^2/2\Lambda^2} j_u(qr) V_{\nu,2}^{(a,b)} | i \rangle$$
  
With  $V_{\nu,2} = V_{\text{VV}}^{(a,b)} + V_{\text{AA}}^{(a,b)} + \ln \frac{m_\pi^2}{\mu_{\text{us}}^2} V_{\text{usoft}}^{(a,b)} + V_{\text{CT}}^{(a,b)}$ 

- VMC study shows that the loops have a  $\leq 10 \%$  effect on the <sup>10</sup>He  $\rightarrow$  <sup>10</sup>Be transition Pastore, Carlson, Cirigliano, Dekens, Mereghetti, Wiringa, Phys. Rev. C 97, 014606 (2018)
- Nuclear shell model and pnQRPA confirm the <u>10 % effect in heavier nuclei (A=48...136)</u> Castillo, Jokiniemi, Menéndez, Phys. Lett. B 860, 139181 (2025)





Castillo, Jokiniemi, Menéndez, Phys. Lett. B 860, 139181 (2025)

#### CONTRIBUTION FROM ULTRASOFT NEUTRINOS

$$M_{\text{usoft}}^{0\nu} = -\frac{2\pi}{R} \sum_{n} \langle f | \sum_{a} \tau_{a}^{-} \sigma_{a} | n \rangle \langle n | \sum_{b} \tau_{b}^{-} \sigma_{b} | i \rangle$$
$$\times (E_{e} + E_{n} - E_{i}) \left( \ln \frac{\mu_{\text{us}}}{2(E_{e} + E_{n} - E_{i})} + 1 \right)$$





#### CONTRIBUTION FROM ULTRASOFT NEUTRINOS

$$M_{\text{usoft}}^{0\nu} = -\frac{2\pi}{R} \sum_{n} \langle f | \sum_{a} \tau_{a}^{-} \boldsymbol{\sigma}_{a} | n \rangle \langle n | \sum_{b} \tau_{b}^{-} \boldsymbol{\sigma}_{b} | i \rangle$$
$$\times (E_{e} + E_{n} - E_{i}) \left( \ln \frac{\mu_{\text{us}}}{2(E_{e} + E_{n} - E_{i})} + 1 \right)$$

• Contribution from "**ultrasoft**" ( $|\mathbf{k}| \ll k_{\rm F} \sim 100$  MeV) neutrinos





#### CONTRIBUTION FROM ULTRASOFT NEUTRINOS

$$M_{\text{usoft}}^{0\nu} = -\frac{2\pi}{R} \sum_{n} |f| \sum_{a} \tau_{a}^{-} \sigma_{a}(n) \langle n| \sum_{b} \tau_{b}^{-} \sigma_{b}| i \rangle$$
$$\times (E_{e} + E_{n} - E_{i}) \left( \ln \frac{\mu_{\text{us}}}{2(E_{e} + E_{n} - E_{i})} + 1 \right)$$

• Contribution from "**ultrasoft**" ( $|\mathbf{k}| \ll k_{\rm F} \sim 100 \text{ MeV}$ ) neutrinos




## CONTRIBUTION FROM ULTRASOFT NEUTRINOS

$$M_{\text{usoft}}^{0\nu} = -\frac{2\pi}{R} \sum_{n} |f| \sum_{a} \tau_{a}^{-} \sigma_{a} |n\rangle \langle n| \sum_{b} \tau_{b}^{-} \sigma_{b} |i\rangle$$
$$\times (E_{e} + E_{n} - E_{i}) \left( \ln \frac{\mu_{\text{us}}}{2(E_{e} + E_{n} - E_{i})} + 1 \right)$$

- Contribution from "**ultrasoft**" ( $|\mathbf{k}| \ll k_{\rm F} \sim 100$  MeV) neutrinos
- According to the NSM and pnQRPA,

$$\frac{M_{\rm usoft}^{0\nu}}{M_{\rm LO}^{0\nu}} \sim 5\% - 10\%$$

Castillo, Jokiniemi, Soriano, Menéndez, Phys. Lett. B 860, 139181 (2025)







Castillo, Jokiniemi, Soriano, Menéndez, Phys. Lett. B 860, 139181 (2025)

## CONTRIBUTION FROM ULTRASOFT NEUTRINOS

$$M_{\text{usoft}}^{0\nu} = -\frac{2\pi}{R} \sum_{n} f \left| \sum_{a} \tau_{a}^{-} \sigma_{a} \left| n \right\rangle \langle n \right| \sum_{b} \tau_{b}^{-} \sigma_{b} \left| i \right\rangle$$
$$\times (E_{e} + E_{n} - E_{i}) \left( \ln \frac{\mu_{\text{us}}}{2(E_{e} + E_{n} - E_{i})} + 1 \right)$$

- Contribution from "**ultrasoft**" ( $|\mathbf{k}| \ll k_{\rm F} \sim 100$  MeV) neutrinos
- According to the NSM and pnQRPA,

$$\left| \sim 5\% - 10\% \right|$$

Castillo, Jokiniemi, Soriano, Menéndez, Phys. Lett. B 860, 139181 (2025)

Can be seen as a "closure correction"







Castillo, Jokiniemi, Soriano, Menéndez, Phys. Lett. B 860, 139181 (2025)

## **CONTRIBUTION FROM ULTRASOFT** NEUTRINOS

$$M_{\text{usoft}}^{0\nu} = -\frac{2\pi}{R} \sum_{n} f \left| \sum_{a} \tau_{a}^{-} \sigma_{a} \left| n \right\rangle \langle n \right| \sum_{b} \tau_{b}^{-} \sigma_{b} \left| i \right\rangle$$
$$\times (E_{e} + E_{n} - E_{i}) \left( \ln \frac{\mu_{\text{us}}}{2(E_{e} + E_{n} - E_{i})} + 1 \right)$$

- Contribution from "ultrasoft"  $(|\mathbf{k}| \ll k_{\rm F} \sim 100 \text{ MeV})$  neutrinos
- According to the NSM and pnQRPA,

$$\sim 5\% - 10\%$$

Castillo, Jokiniemi, Soriano, Menéndez, Phys. Lett. B 860, 139181 (2025)

Can be seen as a "closure correction"







Castillo, Jokiniemi, Soriano, Menéndez, Phys. Lett. B 860, 139181 (2025)



















Current best limits



#### Shickele, Jokiniemi, Belley, Holt, in preparation





#### Shickele, Jokiniemi, Belley, Holt, in preparation



Next-generation experiments



Shickele, Jokiniemi, Belley, Holt, in preparation



Next-generation experiments



Shickele, Jokiniemi, Belley, Holt, in preparation



## SUMMARY AND OUTLOOK

- $0\nu\beta\beta$  decay is a robust yet challenging probe for BSM physics and neutrino properties
- Ab initio methods are becoming capable of computing the needed nuclear matrix elements
- *X*EFT analysis of the operators allows for uncertainty quantification
- Next-generation experiments likely to fully cover the inverted-hierarchy band of neutrino masses
- Nuclear deformation
- Two-body currents
- Consistent order-by-order convergence study





<sup>100</sup>Mo

<sup>130</sup>Te

<sup>136</sup>Xe

Comb

<sup>76</sup>Ge

<sup>100</sup>Mo

Phen.

<sup>130</sup>Te

<sup>136</sup>Xe

<sup>130</sup>Te

<sup>136</sup>Xe

Ab Initio

Comb

QRPA NSM

## SUMMARY AND OUTLOOK

•  $0\nu\beta\beta$  decay is a robust yet challenging probe for NSM+GCF /S-IMSRG BSM physics and neutrino properties IM-GCM M <sup>0v</sup> light Ab initio methods are becoming capable of computing the needed nuclear matrix elements •  $\chi$ EFT analysis of the operators allows for uncertainty quantification <sup>76</sup>Ge <sup>48</sup>Ca <sup>82</sup>Se Next-generation experiments likely to fully cover the inverted-hierarchy band of neutrino masses Inverted Hierarchy TODO m هھ [eV] س 10-2 Nuclear deformation See talk by G. Chambers-Wall Two-body currents tomorrow at 4:46 pm Consistent order-by-order convergence study Normal Hierarchy 10-3  $10^{-3}$ m<sub>lightest</sub> [eV]

