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Tensor decomposition

The Fundamental Symmetries approach

How to describe interactions with
Nuclei @Low Energy?

QCD is nonperturbative @Low Energies

» Effective Theories

» The structure of the coupling
is determined only by
symmetry considerations
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Neutrino-nucleus scattering

PHYSICAL REVIEW D 102, 074018 (2020)

Coherent elastic neutrino-nucleus scattering:
EFT analysis and nuclear responses

Martin Hoferichter®,'”" Javier Menéndez®,**' and Achim Schwenk®>®*’*

» Used the Tensor — vector-like decomposition:

1

» The mixed space-time (T') « X

» The space-only (T) response functions identify with
the Axial-vector ones in leading order!

For the tensor operator, the most relevant contributions
are expected from the spacelike components o;;, because
only those are momentum independent and not suppressed
by 1 /my in the nonrelativistic expansion. For the same
reason, the induced terms in Eq. (21) are subleading. The
result of the multipole decomposition for tensor currents,
see Appendix D, then leads to the following expressions:
defining the couplings via
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Contrary to the axial-vector response, there is now also a
contribution from the longitudinal multipoles, Eﬁ(qz].
These response functions are identical to the ones derived
for the axial-vector case only at leading order, i.e., the two-
body corrections for the tensor current would take a
different form and likewise the corrections from the
induced pseudoscalar and the axial-vector radius need to
be removed:
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» A major puzzle in Astrophysics and Cosmology

» Leading candidates - WIMPs:
Weakly-Interacting Massive Particles

» Direct detection:
» Measuring WIMP scattering off nuclei on detectors
» Detection capabilities: g~100 MeV/c

[q - momentum transfer ]
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Axial vector (C, involved in each of S, P, V, A, T

_Tensor (Cr)



Dark Matter

How can we find the Tensor NREFT?

Low energy interaction of
WIMPs with nucleons Non-Relativistic

! "' Effective Field Theory
WIMP  _ - nuclear
current X0xX NOWN - Current
| N
L~70, x|NOyN
Nuclear . o 1] 5 ~(1) o\ [ u Qv
current: (k¢ |juy ki) = (ky) 5 97 () o + 377 (¢°) @% — mM% +

_ reoKY voKH 5
+g§?) (%) ( q - q ) +g}3) (?) (%L %i

mMar Mar mar Mar

And similar terms for the WIMPs 0, x



] N Dark Matter

WIMP’s 5 ~ . huclear

curren j(x) J(X) curren
Tensor t VAW t
— vector-like objects £~ (@) G (B)

==

» Sym IC:
» A space-time-metric e stress-energy tensor

» Antisymmetric
» Fermionic probes [ ~he. (% lo. %) \

= Joo =0
= Jio = —Joi s = .
= Jij— [jij](l) @

AGM & Gazit, PRD 2023
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E.g.,

o _
Cluw Xot'x N

y®° variations

AGM, PRD letter 2024

Tensor

(

AQu Ky

qv Ky

mympy

mympy

))’SN

] N Dark Matter

WIMP’s ., ~ . huclear
current j(x) J(X) current

] N
L~ (3) Iy (%)

20 couplings were known
from Scalar & Vector,
24 new Tensor couplings!

To identify the interaction’s nature, we
need to know the operators & symmetries
involvedineachof S, P, VA, T
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] N Dark Matter

12

xa=od Tensor WIMP’s ~ o huclear
Oy "S5 current S JX) cyrrent

%Vv ! N

u Ky L~ (%) I (%)

my my oL :_"T,]_)T_|_—’T’.])T’

LA decomposition T

Fmy 20 couplings were known

5 . .
Yy~ variations from Scalar & Vector,

24 new Tensor couplings!

vector-like
objects

To identify the interaction’s nature, we
need to know the operators & symmetries
involvedineachof S, P, VA, T

AGM, PRD letter 2024
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12
AxTX2 =24 Tensor

y° variations

decomposition

vector-like
objects

[ -2

AGM, PRD letter 2024

—l——O' + 2(0, X
mme N) (X

] N Dark Matter

WIMP’s ., nuclear
current j(x) ‘7( X) current

] N
L~ (%) Jn (@)
==
20 couplings were known

from Scalar & Vector,
24 new Tensor couplings!

sy, 4 (50 4 1
'V)mNO'NmN +0m5

.

To identify the interaction’s nature, we
need to know the operators & symmetries
involvedineachof S, P, VA, T
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] N Dark Matter

12
xo= Tensor WIMP’s . ~ .- huclear
Oy "S5 current S JX) cyrrent
:,l_l;vyv I N
I K L~ (%) Jp (%)
my my oL :__’T,fT_l_"T’.fT’
LA decomposition R
Fmy 20 couplings were known

5 . .
y> variations from Scalar & Vector,

24 new Tensor couplings!

vector-like
objects

2 - - -
DL R 2 X pl). — L 0| —
m lmz%z <mx N)+ (GX v ) mpy (GN mN>+ (ms)

-
¢ To identify the interaction’s nature, we
OpErators Juummetial Ui R ]Fr?vlgl‘:;:j[ Now we know all operators

AGM, PRD letter 2024 \

involved in Tensor couplings
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Relevant also for...

Lepton Flavor Violation
u—e conversion




Flavor Violation

Beyond Standard Model (BSM)

NOBEL PRIZE IN PHYSICS 2015 | Elementary Particles

The MNobel Prize in Physics 2015 was awarded to Takaaki Kajita and Arthur B.
‘ gluon

McDonald for discovery of neutrino oscillations, which shows neutrinos have mass.
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Lepton Flavor Violation

(Credit: Wikipedia)



Beyond Standard Model (BSM)

NOBEL PRIZE IN PHYSICS 2015

The MNobel Prize in Physics 2015 was awarded to Takaaki Kajita and Arthur B.
McDonald for discovery of neutrino oscillations, which shows neutrinos have mass.

Meutrinas are tiny subatomic particles, produced by nuclear
reactions that take place in stars, mcludmg our sun, as well as in
radioactive decay processes. They come in three ‘flavours’,

WHAT IS A
NEUTRIND"

ELECTRON NEUTRINO m TAU NEUTRINO

The number of neutrinas
detected was only a third of
the expacted value.

The nuclear reactions in
the sun produce neutrinos,
which we can detect.

WHY DOES IT
MATTER?

BOOMPOUMD INTEREST 2015 - WWW.COMPOUNDCHEM.COM | @COMPOUNDCHEM
Shared under & Creative Commaons Attribution-NonCommerdal-NoDerivatives Boeence.

Meutrinas ‘flip’ between the
three flavours, and only one
type was being detectad.

If neutrinos oscillate between types, thay must have mass, even
if this mass is incredibly small This contradicts the standard
model of particle physics, which states they are massless.

Charged Lepton Flavor Violation (CLFV) “

Elementary Particles

three generations of matter

1 ﬂ

{fermions)

Flavor Violation
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Flavor Violation

Beyond Standard Model (BSM)

NOBEL PRIZE IN PHYSICS 2015 | Elementary Particles

The MNobel Prize in Physics 2015 was awarded to Takaaki Kajita and Arthur B.
McDonald for discovery of neutrino oscillations, which shows neutrinos have mass.

three generations of matter
{fermions)

WHAT IS A Meutrinas are tiny subatomic particles, produced by nuclear | || || |
= reactions that take place in stars, mcludmg our sun, as well as in
N EUTRINO? radioactive decay processes. They come in three ‘flavours’,

ELECTRON NEUTRINO m TAU NEUTRINO

{511 Mevfc? 210567 Mevic? =1. 7768 Gew/c®

; o«-m g

electron

=22 eWje? <17 Mg =155 Mewe?!

g a-& Vo Ve

electron muon tau
neutrino  J{ neutrino || neutrino

LEPTONS

\

hamproucasnioos,  detecmucsonlys ol | theee Revoutt by o CLFV can occur through neutrino mixing,

which we can detect. the expacted value. type was being detectad.

50
e | PULTS sUppressed by BR ~ o= 107 5

model of particle physics, which states they are massless. e . g oy

SR e s AU ScournU o = Anything above it
is New Physics!

Charged Lepton Flavor Violation (CLFV) y




Flavor Violation

Beyond Standard Model (BSM)

with nuclei... ,
Elementary Particles

three generations of matter
{fermions)

This is what we start with. =050 Mevfct [ =M0SETMewic' | | =L7768 Gev/c?

S | =] 1
) ol @ W @
'3 \ ~
R T ] O electron
s\ :\ { 0 - .
o < 3 Ll [=rzewe? =17 Mgy =155 Ml
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O /'.‘ —_—
P Yo e Ve W
4N electron muon tau
¢ -. neutrino || neutrino | neutrino
e 1 A s
‘ A ]

o' @ ma CLFV can occur through neutrino mixing,
(Credit: symmetry magazine) but is Suppressed by BR ~ L2 =< 10_50
e.g., W 2

= Anything above it WX

is New Physics!

Charged Lepton Flavor Violation (CLFV)




Flavor Violation

Beyond Standard Model (BSM)

with nuclei...

Elementary Particles
u — e conversion

This is what we start with. This is the process we are looking for. #B51Mevic | SOSETMeve | | =L776 Gevyc’
1 ] |
M ol @e B ®
g } g \\_) - O | electron
. ( \ " \ =
\ \ \ \
\ 7 ¢ - . 7 n
..\ " \ ,’ e \ // \ ‘ P /7 I.IJ 'ﬂ-zy"u"':i 1 "1-?“’-"'"#} 1 =155 Ml
Nao = & I == - =l (g 0
it - 7 = e
LE - g - V) e ) e W
4N 7\ S electron muon tau
Ny N X ', A neutrino  J| neutrino [ neutrino
&y Yy b \ -
Lt @ sa e’ T CLFV can occur through neutrino mixing,
e . m, _
(Credit: symmetry magazine) but is Suppressed by BR~—=<10 50

myy r}/

W:I:

e.g.,
= Anything above it
is New Physics!

Charged Lepton Flavor Violation (CLFV)




Flavor Violation

Beyond Standard Model (BSM)

with nuclei... TABLE IX. Existing limits on branching ratios for g — e con-
version. taken from the tabulation of [75].

* Process Limat Lab/Reference
u — e conversion - . .
w45 o o 4 225 7% 10 SIN [76]
This is what we start with. This is the process we are looking for. K +Ti e +Ti 1.6 x 10 I_I, TRIUMF [T?]
= +Ti = & +Ti 4.6 x 107" TRIUMF [78]
~~ 4 ey o +Ti = e~ 4T 4.3 » 1071 PSI [79]
E i i W it +Ti = ¢ +Ti 6.1 = 107" PSI [80]
v K 4 % = +Cu — e~ +Cu 1.6 x 10-% SREL [81]
kil oo ¢ YA S B AL — e~ +Au 7 x 10713 PSI [82]
LB - &\ Z © i +Pb — e +Pb 49 % 107" TRIUMF [78]
g g % 4 ‘\\ /A - +Pb — e~ +4Ph 4.6 x 10-1 PSI [B3]
',’ N\ # ; \ 0% \
e 4 i N ‘ e ! Haxton, Rule, McElvain, Ramsey-Musolf, PRC 2023
; 4 ® ‘, { ’,\\\\ /! . ¢ o
Lt B o’ T CLFV can occur through neutrmo mixing,
e
(Credit: symmetry magazine) but is Suppressed by BR~—=<10" 50

» Future experiments: mu2e @ Fermilab, COMET @ J- PARC
(27A1) 10~ 17

— Observation of CLFV is New Physics
beyond vSM (SM + neutrino mass)
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NREFT - Similar, but difflesrent Non-Relativisti

Effective Field The¢

_ — 15 NREFT
L~ eOL'u NONN RN Z CiOi operators

only 11 were

» qg~m, =1 obtained
° o e . _1,-_11 E‘
» The electron is “fully relativistic” (4,2)
y - (T) } |UN| } |U”| Coulomb
il i‘? = = =
I = ~—7» v, ay, ON
9 |
{- ! P Coulomb -
L, ON +1 —1 +1 5
iq +1 +1 —1 _
v +1 —1 —1 (A.Z) p

FIG. 1. Depiction of elastic g - ¢ conversion. The nuclear
Coulomb potential binds the s initial-state muon and distorts the

Rule, Haxton, McElvain, PRL 2023 outgoing electron wave function. Neglecting nuclear recoil, the elec-
Haxton, Rule, McElvain, Ramsey-Musolf, PRC 2023 tron’s energy is the muon mass minus its Coulomb binding
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NREFT - Similar, but difflesrent Non-Relativisti

Effective Field The¢

_ — 15 NREFT
L~ eOL'u NONN RN Z CiOi operators

only 11 were

> g~my =1 obtained
] CRRPICIS } {A-. E)
» The electron is “fully relativistic
y — (T) } |UN| } |UJ'1| Coulomb
R 7 A o :
ig=1zp U 9 On Missing tensor couplings
{- r F Coulomb -
&L& &N +l —l +l ﬁ:.!-
iq +1 +1 —1 )
3 +1 1 ] (4,2) #

FIG. 1. Depiction of elastic g - ¢ conversion. The nuclear
Coulomb potential binds the s initial-state muon and distorts the

Rule, Haxton, McElvain, PRL 2023 outgoing electron wave function. Neglecting nuclear recoil, the elec-
Haxton, Rule, McElvain, Ramsey-Musolf, PRC 2023 tron’s energy is the muon mass minus its Coulomb binding
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Tensor u—e conversion: NREFT . retativisti

Xe (@"v" — ¢" ") xuNouvs N Effective Field The¢

vector-like
objects

To identify the interaction’s nature, we

need toknow [\, we know all operators
involved
involved in Tensor couplings

AGM, PRD letter 2024
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Flavor Violation

Tensor u—e conversion: NREFT . retativisti

Xe (6"v" — @"Y") xuNopwys N Effective Field Thet

vector-like
objects

2 (5010 — 012 — Os5

operators

N : AR
| .
4 New operators! [ Matching data lentify the interaction’s nature, we

Easier for identifying the
nature of the CLFV = Must be Tensor [o know
. J C involved

AGM, PRD letter 2024

[ Now we know all operators
involved in Tensor couplings
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Flavor Violation

Tensor u—e conversion: SMEFT . s.rd mode
Effective Field The¢

1 N 1 s
LSMEFT NLSM + Wz Ci06i ~+ Wz di08i + .-
i l ;

T B ~K
li“ouweneskqr o up

AGM, PRD letter 2024
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Flavor Violation

Tensor u—e conversion: SMEFT . s.rd mode

Effective Field The¢
1 O 1 O - o _ (18
Lsmert ~Lsm + 777 z Ci06i + 772 z d;Og; + - L= \eo
l l l (0 1
. “= =10
—K
qdr, = dzn

m SQ B =m
—VLJWGRd o' up —eJoepuy

AGM, PRD letter 2024
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Flavor Violation

Tensor u—e conversion: SMEFT . s.rd mode

Effective Field The¢

1 N 1 - ) L
i i
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E.q., p-decay

AGM, PRD letter 2024
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Flavor Violation

Tensor u—e conversion: SMEFT ., 4ard mode
Effective Field The¢

1« 1 <« .-
Lsmerr ~Lsm + 755 e z C;Og; + Wz d;Og; +
L l L

B ~K
%0 ehe ik ™o ul

( )

i 2, | =
VLUWGRd o' UR |~ €10 eR

E.q., p-decay

= can only occur with up, charm, or top quarks (m,n =1, 2, 3)

AGM, PRD letter 2024
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Fermionic Tensor — vector-like objects

BSM Tensor missing theory' > 5:00 PM @ Tests of Symmetries & EW:
Unique forbidden f-decays
> B -decays at zero momentum transfer
» BSM matrix elements identify Seng, AGM, Cirigliano, PRL 2025
with the well-known SM ones Forbidden decays are not forbidden

» Predictions & Observables for
forbidden decays for the first time

» New experiments @ ORNL, HUJI,
SOREQ AGM & Gazit, PRD 2023

» Dark Matter (WIMPs)

» New terms

» Identification of the tensor
symmetry involved is now possible

» u—e
» New Operators

» Matching data = Must be Tensor!
AGM, PRD letter 2024
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Fermionic Tensor — vector-like objects

BSM Tensor missing theory: mixed
Time-only space-time
» B-decays [ T (e R =)
» BSM matrix elements identify
with the well-known SM ones ( T \ ( \
T’ T

» Predictions & Observables for T =

forbidden decays for the first time

» New experiments @ ORNL, HUJI, SOREQ \ \ l ) \ Space-only ) )
Glick-Magid & Gazit, PRD 2023 mixed
» Dark Matter (WIMPs) Space-time
» New terms A N
» Identification of the tensor symmetry Something’s ., ~ - Nuclear
involved is now possible current. J (%) JX) current
> u-ve 1 N
» New Operators Hw ~ J# () j,w(f)
» Matching data = Must be Tensor! = —[fT I+ jT']

Glick-Magid, PRD letter 2024
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