Northwestern

Search for Coherent Elastic Neutrino-Nucleus Scattering with the Ricochet Experiment

Emanuela Celi - Northwestern University On behalf of the RICOCHET collaboration CIPANP2025 6/11/2025

The coherent elastic neutrino-nucleus scattering (CEvNS)

- Originally proposed in 1974 by Daniel Friedman
- * Neutrinos interact coherently with all neutrons in the nuclei when the momentum exchanged is smaller than the inverse of the nuclear size
- * First observation in 2017 by the COHERENT collaboration

CEvNS: Differential cross section

 E_{ν} : neutrino energy E_r : nuclear recoil energy

 m_N : nuclear mass G_F : Fermi constant

$$\frac{d\sigma}{dE_r} (E_r, E_\nu) = \frac{G_F^2}{4\pi} Q_W^2 m_N \left(1 - \frac{m_N E_r}{2E_\nu^2} \right) F^2 (E_r) \longrightarrow$$
Form factor: depends on the neutrons and protons distributions in the

nucleus

 $F^2(E_r) = 1 \rightarrow$ full coherence

CEvNS: Differential cross section

 E_{ν} : neutrino energy E_r : nuclear recoil energy

 m_N : nuclear mass G_F : Fermi constant

$$\frac{d\sigma}{dE_r} \left(E_r, E_\nu \right) = \frac{G_F^2}{4\pi} Q_W^2 m_N \left(1 - \frac{m_N E_r}{2E_\nu^2} \right) F^2 \left(E_r \right) \longrightarrow \text{Form factor}$$
Kinematics: $E_r^{max} = \frac{2E_\nu^2}{m_N}$

Emanuela Celi, CIPANP2025

CEvNS: Differential cross section

$$\frac{d\sigma}{dE_r} \left(E_r, E_\nu \right) = \frac{G_F^2}{4\pi} Q_W^2 n_N \left(1 - \frac{m_N E_r}{2E_\nu^2} \right) F^2 \left(E_r \right)$$

$$Q_W = N - Z \left(1 - 4 \sin^2 \theta_W \right)$$

 $\sigma \propto N^2$ $\underbrace{\textcircled{}}^{*}$ High neu

- * Higher cross section compared to the other neutrino detection channels
- * Sensitive to all neutrino flavors

The search for $\ensuremath{\text{CEvNS}}$

- * Requirements:
 - High-flux neutrino source
 - Detectors tailored to recoil energies
 - Possibility to turn ON/OFF neutrinos flux

Emanuela Celi, CIPANP2025

aims to measure the CEvNS with antineutrinos from nuclear reactor hosted at the Institut Laue Langevin (ILL) in Grenoble (France) with cryogenic particle detectors

* 8.8 m from high-flux 55 MW reactor

 * 2023—2026 program with 7 reactor ON/OFF cycles (+ possible extension)

Muon Veto (Top/Side panels) Borated PE (Outer/Inner) Lead Shielding

Decoupled Frame

aims to measure the CEvNS with antineutrinos from nuclear reactor hosted at the Institut Laue Langevin (ILL) in Grenoble (France) with cryogenic particle detectors

- * Cryostat equipped with Ultra Quiet Technology to reduce environmental vibrations
- * Optimized shielding design:
 - 35-cm-thick inner layer of borated highdensity polyethylene (HDPE)
 - 20-cm-thick outer layer of lead
 - 35-cm-high top layer of HDPE

CryoCube

Cryogenic Germanium detectors GeNTD/HEMT readout

R&D phase

Cryogenic supercondutor **TES** readout

CryoCube technology

- * Dual readout heat-ionization cryogenic calorimeters operating at O(10 mK)
- * Detector module: 42 g Ge crystal
- * Well established technology from dark matter searches
- * Phonon energy is boosted by the Neganov-Trofimov-Luke (NTL) effect
- * Operating voltage \pm 4V

$$\mathbf{E}_{\mathrm{ph}} = \mathbf{E}_{\mathrm{r}} + \mathbf{E}_{\mathrm{NTL}} = \mathbf{E}_{\mathrm{r}} + \mathbf{E}_{\mathrm{r}} \cdot \mathbf{\mathcal{Q}} \frac{\mathbf{q} \cdot \mathbf{V}}{\epsilon}$$

CryoCube technology - Particle identification

Particle identification allows to separate electronic (ER) from nuclear recoils (NR)

Emanuela Celi, CIPANP2025

Why PID?

Emanuela Celi, CIPANP2025

First commissioning @ ILL

- First commissioning run successfully conducted from May to October 2024
- * MiniCryoCube: array of 3 "planar" detectors
- ∗ ~577 h of reactor-on data, and ~1400 h of reactor-off data

Results from the first commissioning @ ILL

- Activation of ⁷¹Ge before the run to use the 10.3 keV X-ray for calibration
- * ⁴¹Ar from the activation of Ar in the air surrounding the cryostat when reactor is ON
- ~40 eVee, ~50 eVph baseline resolution achieved on ionization and heat (respectively)
- Optical fiber coupled to each detector to inject artificial pulses

Results from the first commissioning @ ILL

- * Clear separation between ER and NR
- * Background sources:
 - Reactogenic neutrons \rightarrow Shielded
 - Cosmogenic neutrons \rightarrow Vetoed
 - Surface β-decays
- * Muon-induced NR rate ~ 14 counts/ kg/day during Reactor OFF → reject by veto

FID detectors

Fully Inter-Digitized (FID) \rightarrow re-optimized electrodes geometry to differentiate bulk from surface events (~70% fiducial volume)

Emanuela Celi, CIPANP2025

FID performances

Rejection of the majority of surface events

Status of RICOCHET @ ILL

- Third Detector run from January to June 2025 in preparation for the physics run
- * First FID installation @ ILL
- * 9 Detectors (5 planar + 4 FID)
- * Cryo-muon veto installation
- Improving ionization noise conditions decoupling of 1 K HEMT stage from 10 mK detector stage

Whats next?

Summer 2025:

- * Installation of 18-detector Array (7 planar + 11 FID)
- * Commissioning paper will be submitted soon
- * Analysis of science run with 9 detectors

2026++:

- * CEvNS from 18 payload detectors
- * New detector technologies (superconductors, Si and Ge detectors)

Thanks for the attention

How to detect $\text{CE}\nu\text{NS}$

Requirements:

- * Low energy neutrinos $E_{\nu} \lesssim 30 \text{MeV}$
- * Intense neutrino source:
 - Spallation neutron sources
 - Nuclear reactors
- * Technology able to detect nuclear recoils $E_r^{max} \sim 20 100 \text{ keV}$

Barbeau PS, et al. 2023 Annu. Rev. Nucl. Part. Sci. 73:41–68

Background in next generation dark matter experiments

- CEvNS shows the same signature (nuclear recoils) of the expected WIMP dark matter signal
- CEvNS from solar and atmospheric neutrinos represents an irreducible background for future dark matter searches (neutrino fog)
- → precise CEvNS measurements can constrain this background contribution

Many experiments...

Experiment	Detetctor Type	Location	Source
COHERENT	Csl, Ar, Ge, Nal	USA	πDAR
ССМ	Ar	USA	πDAR
JSNS ²	TBD	Japan	πDAR
ESS	Csl, Si, Ge, Xe	Sweden	πDAR
BULLKID	Si/Ge	Italy	Reactor
CHILLAX	Ar	TBD	Reactor
CONNIE	Si CCDs	Brazil	Reactor
CONUS	HPGe	Germany	Reactor
DRESDEN II	PCGe	USA	Reactor
NEWS-G	Ar+CH4	Canada	Reactor
MINER	Ge/Si cryogenic	USA	Reactor
NEON	Nal(TI)	Korea	Reactor
NUCLEUS	Cryogenic CaWO ₄ , Al ₂ O ₃	Europe	Reactor
NUXE	Xe		Reactor
vGEN	Ge PPC	Russia	Reactor
RED-100	LXe dual phase	Russia	Reactor
Ricochet	Ge, Zn bolometers	France	Reactor
TEXONO	p-PCGe	Taiwan	Reactor
SBC	Scint. Bubble Chamber	USA	Reactor

Detector energy deposition

Phonons-based detectors are the most sensitive to small energy depositions like nuclear recoils

Cryogenic particle detectors

Highly sensitive calorimeters operated at cryogenic temperature (\sim 10 mK)

$$\Delta T(t) = \frac{\Delta E}{C} \exp\left(-\frac{t}{\tau}\right)$$
 where $\tau = \frac{C}{G}$

From Debye law $C \propto T^3$

Example pulse

Pulse shape depends on the low temperature detector used C = heat capacity

G = thermal conductance

Q-Array technology

- * Dielectrics (like Si and Ge):
 - Ionisation with energy gap of O(1 eV)
 - Detection of long living thermal phonons
- * Superconductors:
 - Debye energy > $2\Delta_{gap}$ [O(100 μ eV)]
 - Athermal phonons above the gap create quasi-particles, these are trapped and emit phonons

Q-Array status

- * Testing different crystals (Zn, Sn, Al) with TES readout
- * The final setup is composed of 9 Q-Array detectors with a multiplexed readout
- * Possibility of particle identification through pulse shape discrimination

