June 9, 2025

Searching for Lepton Flavor Violation

Kaori Fuyuto

 $\mathsf{LANL} \to \mathsf{KEK}$

V. Cirigliano, KF, C. Lee, E. Mereghetti, B. Yan, JHEP03(2021)256 S. Banerjee, V. Cirigliano, et al, Snowmass White Papaer, 2203.14919 F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

CIPANP 2025 U of Wisconsin Madison We still don't know much about our Universe.

Need Physics Beyond the Standard Model

Charged Lepton Flavor Violation

Searches for CLFV are strong tools to probe BSM physics.

*Beyond the minimal extension of the SM

Charged Lepton Flavor Violation

Searches for CLFV are strong tools to probe BSM physics.

Ex) SM + neutrino mass (vSM)

Petcov '77, Marciano-Sanda '77

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\nu-\rm mass}$

Dirac or Majorana

$$\operatorname{Br}(\mu \to e\gamma) = \frac{\alpha_{\rm em}}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{1i}^2}{m_W^2} \right|^2 < 10^{-54} \quad \text{Extremely small}$$

Charged Lepton Flavor Violation

Searches for CLFV are strong tools to probe BSM physics.

Ex) SM + neutrino mass (vSM)

The Observations of CLFV would point to new physics beyond vSM.

*Underlying mechanism of the neutrino mass.

CLFV searches

 $BR(\mu \to e\gamma) < 3.1 \times 10^{-13}$

MEG II Collaboration, 2310.12614

 $BR(\tau \to e\gamma) < 3.3 \times 10^{-8}$

BaBar, PRL104 (2010) 021802

 $BR(\mu^{-} Ti \rightarrow e^{-} Ti) < 6.1 \times 10^{-13}$

P.Wintz, Conf. Proc. C 980420, 534 (1998).

 $BR(\tau \to e\pi^+\pi^-) < 2.3 \times 10^{-8}$

Belle, PLB719 (2013) 346-353

CLFV searches

CLFV searches

V. Cirigliano, KF, C. Lee, E. Mereghetti, B. Yan, JHEP03(2021)256 F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

Model-Independent Analysis of CLFV process at low- and high-energy

EIC vs LHC vs Low-Energy CLFV searches

Model-Independent Analysis

SMEFT : Standard Model Effective Field Theory

Model-Independent Analysis

SMEFT : Standard Model Effective Field Theory

Model-Independent Analysis

SMEFT : Standard Model Effective Field Theory

CLFV operators

Total : 16 different types of LFV operators (dim 6)

$$\begin{split} \mathscr{L}_{\text{LFV}} &= \mathscr{L}_{\psi^2 \varphi^2 D} + \mathscr{L}_{\psi^2 X \varphi} + \mathscr{L}_{\psi^2 \varphi^3} + \mathscr{L}_{\psi^4} \\ X : \text{Gauge boson} \qquad \psi : \text{Fermion} \qquad \varphi : \text{Higgs} \end{split}$$

CLFV operators

Total : 16 different types of LFV operators (dim 6)

$$\begin{aligned} \mathscr{L}_{\text{LFV}} &= \mathscr{L}_{\psi^2 \varphi^2 D} + \mathscr{L}_{\psi^2 X \varphi} + \mathscr{L}_{\psi^2 \varphi^3} + \mathscr{L}_{\psi^4} \\ X : \text{Gauge boson} \qquad \psi : \text{Fermion} \qquad \varphi : \text{Higgs} \end{aligned}$$

$$\supset -\frac{4G_F}{\sqrt{2}} \sum_{\substack{\ell = \tau, \mu \\ q = u, d}} [C_{Lq}]_{\ell eij} \,\bar{\ell}_L \gamma^{\mu} e_L \,\bar{q}_{Ri} \gamma_{\mu} q_{Rj}$$

*Focus on tau-electron case.

Low-Energy Tau and Meson Decay

Decay mode	Upper limit (90 % C.L.)		
$ au o e\pi^+\pi^-$	uu/dd/ss	2.3×10^{-8}	Belle PLB719(2013)346
$ au o e\pi^0$		8×10^{-8}	Belle PLB648(2007)341
$ au ightarrow e\eta$		9.2×10^{-8}	Belle PLB648(2007)341
$ au ightarrow e \eta'$		1.6×10^{-7}	Belle PLB648(2007)341
$\tau \to eK_S$	ds/ds	2.6×10^{-8}	Belle PLB692(2010)4
$ au o e \pi^+ K^-$		3.7×10^{-8}	Belle PLB719(2013)346
$\tau \to e \pi^- K^+$		3.1×10^{-8}	Belle PLB719(2013)346
$B^0 o e^{\pm} \tau^{\mp}$		1.6×10^{-5}	Belle PRD104(2021)9
$B^+ o \pi^+ e^+ \tau^-$	db/bd	7.4×10^{-5}	BaBar PRD86(2012)012004
$B^+ \to \pi^+ e^- \tau^+$		2.0×10^{-5}	BaBar PRD86(2012)012004
$B^+ \to K^+ e^+ \tau^-$	sb/bs	1.53×10^{-5}	Belle PRL130(2023)26 261802
$B^+ \to K^+ e^- \tau^+$	00,00	1.5×10^{-5}	Belle PRL130(2023)26 261802

Low-Energy Tau and Meson Decay

Decay mode	Upper limit (90 % C.L.)				
$\tau \to e \pi^+ \pi^-$	uu/dd/ss	2.3×10^{-8}	Belle PLB719(2013)346		
$ au o e \pi^0$		8×10^{-8}	Belle PLB648(2007)341		
$ au ightarrow e\eta$		9.2×10^{-8}	Belle PLB648(2007)341		
$ au ightarrow e \eta'$		1.6×10^{-7}	Belle PLB648(2007)341		

• Certain combinations of CLFV operators can be bounded.

Ex) BR
$$(\tau \to e\pi^+\pi^-) \simeq 0.5 \times |[C_{Lu}]_{uu} - [C_{Ld}]_{dd}|^2$$

A. Celis, V. Cirigliano, E. Passemar, PRD89(2014)095014

Low-Energy Tau and Meson Decay

Decay mode	Upper limit (90 % C.L.)				
$\tau ightarrow e \pi^+ \pi^-$	uu/dd/ss	2.3×10^{-8}	Belle PLB719(2013)346		
$ au o e \pi^0$		8×10^{-8}	Belle PLB648(2007)341		
$ au ightarrow e\eta$		9.2×10^{-8}	Belle PLB648(2007)341		
$ au ightarrow e \eta'$		1.6×10^{-7}	Belle PLB648(2007)341		

• Certain combinations of CLFV operators can be bounded.

Ex) BR
$$(\tau \to e\pi^+\pi^-) \simeq 0.5 \times |[C_{Lu}]_{uu} - [C_{Ld}]_{dd}|^2$$

A. Celis, V. Cirigliano, E. Passemar, PRD89(2014)095014

• Quark-flavor conserving processes are generated by light quarks operators

$$[C_{Lu}]_{\tau e} = \begin{pmatrix} [C_{Lu}]_{uu} & [C_{Lu}]_{uc} & [C_{Lu}]_{ut} \\ [C_{Lu}]_{cu} & [C_{Lu}]_{cc} & [C_{Lu}]_{ct} \\ [C_{Lu}]_{tu} & [C_{Lu}]_{tc} & [C_{Lu}]_{tt} \end{pmatrix} \qquad [C_{Ld}]_{\tau e} = \begin{pmatrix} [C_{Ld}]_{dd} & [C_{Ld}]_{ds} & [C_{Ld}]_{db} \\ [C_{Ld}]_{sd} & [C_{Ld}]_{ss} & [C_{Ld}]_{sb} \\ [C_{Ld}]_{bd} & [C_{Ld}]_{bs} & [C_{Ld}]_{bb} \end{pmatrix}$$
 How?

Scale running effects

17

LHC search

- Bound on CLFV top decay by ATLAS with 79.8 fb⁻¹: BR $(t \rightarrow q \ell \ell') < 1.86 \times 10^{-5}$ (95 % CL.) ATLAS collaboration, ATLAS-CONF-2018-044
- ATLAS published pp → 1 l' bounds in high-mass final states using 36 fb⁻¹
 '22 ATLAS and '23 CMS results with 138 and 139 fb⁻¹ ATLAS JHEP 10 (2023) 082 CMS JHEP 05 (2023) 227

Existing bounds

 $[C_{Ld}]_{ij} \ \bar{\tau}_L \gamma^\mu e_L \ \bar{d}_{Ri} \gamma_\mu d_{Rj}$

* Single Operator Analysis

• PDF and loop suppression in $[C_{Ld}]_{bb}$

Existing bounds

* Single Operator Analysis

$$[C_{Lu}]_{ij} \ \bar{\tau}_L \gamma^\mu e_L \ \bar{u}_{Ri} \gamma_\mu u_{Rj}$$

- Less constrained by low energy than d-type operators
- Strong bound on $[C_{Lu}]_{tt}$ from $\tau \to e \pi^+ \pi^-$

Multi-operator scenario

S. Banerjee, V. Cirigliano, et al, Snowmass White Papaer, 2203.14919

*Case with 8 nonzero CLFV operators

Z couplings + down-type 4F operators

$$\mathscr{L}_{\rm LFV} \supset -\frac{g_2}{c_W} \left(c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right) \bar{\tau}_L \gamma^{\mu} Z_{\mu} e_L$$
$$-\frac{4G_F}{\sqrt{2}} \sum_{a=d,s,b} \left[C_{Ld} \right]_{aa} \bar{\tau}_L \gamma^{\mu} e_L \bar{d}_{Ra} \gamma_{\mu} d_{Ra}$$
$$-\frac{4G_F}{\sqrt{2}} \sum_{a=d,s,b} \left[C_{LQ,D} \right]_{aa} \bar{\tau}_L \gamma^{\mu} e_L \bar{d}_{La} \gamma_{\mu} d_{La}$$

• Collider probes are necessary to close the free direction.

What about $e \rightarrow \mu$ case?

F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

What about $e \rightarrow \mu$ case?

F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

• $\mu \rightarrow e$ conversion currently gives strong bound

What about $e \rightarrow \mu$ case?

F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

• LHC leads the bound on $[C_{Lu}]_{cu}$ and $[C_{Lu}]_{tq/qt}$

Summary

Searches for Lepton Flavor Violations are Powerful Probes of BSM Physics.

• Systematic Analysis based on SMEFT

- The RGEs allow to constrain CLFV heavy quark operators

- Collider searches are essential in multi-operator scenarios
- Strong bound in $e \mu$ case especially from $\mu \rightarrow e$ conversion

- Outlook/Discussion Multi-Dimensional Analysis using Machine Learning
 - b, c quark and tau lepton tagging