JUNO Status and Prospects

15th Conference on the Intersections of Particle and Nuclear Physics June 8-13 2025

The ...

Roberto Mandujano rcmanduj@uci.edu University of California, Irvine On Behalf of the JUNO Collaboration

- The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator neutrino detector, with ~700 m underground in southern China
- Placed 52.5 km from 8 nuclear reactors: ~10²⁰ $\bar{\nu}_{\rho}/s$ per GW_{th}
- Reactor $\bar{\nu}_e$ detected through Inverse Beta Decay (IBD) reaction: $\bar{\nu}_{\rho} + p \rightarrow e^+ + n$
 - Positron (prompt) signal followed by neutron capture (delayed) typically on H
 - Temporal and spatial coincidence of prompt and delayed signals is a powerful handle to extract reactor neutrino signal

JUNO Overview

- 35.4 m diameter acrylic sphere filled with 20 kton of liquid scintillator (LS)
 - LS designed for high light yield and low attenuation
- Instrumented outer water tank and top scintillator panels
- 17,612 20" PMTs (LPMTs) and 25,600 3" PMTs (SPMTs)
 - ~78% photo-coverage
 - ~30% detection efficiency (LPMT)
- Unprecedented 3% energy resolution at 1 MeV

Detector Design

- JUNO-TAO (Taishan Antineutrino Detector) will be a satellite detector
 - 44 m from 4.6 GW_{th} reactor \blacklozenge
 - ~1 ton GdLS fiducial volume
 - Instrumented with Silicon Photomultipliers (SiPMs) \blacklozenge providing <2% at 1 MeV energy resolution and >95% photo-coverage
 - Operates at -50°C \blacklozenge
- Measure reactor antineutrino energy spectrum with unprecedented resolution
 - Expect to measure never-before-seen fine structure •
 - Search for sterile neutrinos
 - Important inputs for experiments and nuclear databases

JUNO-TAO

Solar v's Hundreds/ day

۰.,

Cosmic muons ~ 250k/day

 $26.6 \, \mathrm{GW}_{th}$, 53 km reactor v's ~ 60/day Atmospheric v's Several/day

~650 m

VH

Geo-v's 1-2/day Supernova v's 5000 IBDs for CCSN @10 kpc

- Simultaneous observation of solar and atmospheric oscillations
- Determination of NMO through interference effects in fine structure of oscillated spectrum (allowed by large θ_{13})
 - Precise energy spectrum reference from JUNO-TAO
 - Complementary to accelerator and atmospheric measurements
 - Reach ~5 σ in combination with other experiments (*PRD 101*, 032006 (2019), Sci Rep 12, 5393 (2022))

JUNO $\bar{\nu}_{e}$ Oscillations

- Measurement of $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} to <= 0.5% precision with 6 years data
 - Roughly one order of magnitude improvement over existing constraints
 - Precise tests of neutrino oscillations and U_{PMNS} unitarity (1%)

JUNO Relative Uncertainty vs. Current Precision

	Δm_{21}^2	Δm_{31}^{2}	$\sin^2\theta_{12}$	$\sin^2\theta_{13}$
JUNO 100 days	0.8%	1%	1.9%	47.9%
JUNO 6 years	0.3%	0.2%	0.5%	12.1%
KamLAND	2.4%	-	-	_
T2K	-	2.6%	-	_
SNO+SK	_	-	4.5%	_
Daya Bay	-	-	-	3.4%

JUNO $\bar{\nu}_e$ Oscillations

- - detector

Solar Neutrinos

⁸B flux [10⁶ cm⁻²s⁻¹]

 $sin^2\theta_{12}$

- Geoneutrinos $\bar{\nu}_e$ from ${}^{238}U/{}^{232}Th$ in Earth's crust and mantle
 - Development of local crust model underway \blacklozenge
- About 1 geoneutrino event per day:
 - Final sensitivity paper under preparation: \blacklozenge expect ~8% precision on flux (fixed U/Th ratio) in 10 years
 - Will supersede combined KamLAND and \blacklozenge Borexino statistics in less than a year
- Atmospheric Neutrinos: Independent constraint of NMO through matter effect

Geoneutrinos and Atmospherics

JCAP 01 (2024)057

Study of flavor composition, time evolution, and energy spectrum of supernova (SN) burst neutrinos

- Low detection threshold (sub-MeV)
- ◆ For SN @ 10 kpc: ~5000 IBDs, ~2000 pES ~300 eES
- Potential first observation of Diffuse Supernova Neutrino Background
 - Expected detection significance of $\sim 3\sigma$ (nominal model) after 10 years \blacklozenge

Supernova Neutrinos

- **Proton decay search** will exploit triple coincidence in $p \rightarrow \bar{\nu} + K^+ \rightarrow \nu_{\mu} + \mu^+ \rightarrow \bar{\nu}_{\mu} + \nu_e + e^+$
- Good sensitivity: 8.34×10^{33} s 90% CL in 10 years for $p \rightarrow \bar{\nu} + K^+$ channel
- Look for **neutron decays:** invisible decays of bounded neutrons in ${}^{12}C$ through nucleus de-excitation
 - $n \rightarrow inv$:¹² $C \rightarrow$ ¹¹ C^*

•
$$nn \rightarrow inv :^{12} C \rightarrow^{10} C^*$$

Order of magnitude improvement over existing limits in 2 years of datataking

Nucleon Decay

Time-of-flight-corrected Hit time

Status

Bottom structure

5 layers of Acrylic

20 layers of Acrylic

Steel + Acrylic Structures

Platform for Acrylic assembly

Top structure

23 layers of acrylic

Instrumentation Installation

As acrylic layers were finished, sPMT and LPMTs + underwater electronics were installed

Periodic lights-off tests found no major issues and provided us with valuable system experience

Veto PMTs + Magnetic field compensating coils installed

Liquid Scintillator Production

5000 m³ LAB tank

 Al_2O_3 to remove particles

R. Mandujano - UCI

Distillation to remove radioactive impurities

Add 2.5 g/L PPO and 3 mg/L bis-MSB

Four purification plants on-site to achieve radio-purity and transparency goals

- After final cleaning, fill outer pool and central detector with water
- Explore detector performance, calibration, etc. underwater
- Gradually drain central detector water and replace with LS

Drain water(7m³/h)

- Gain, time calibration of 20" PMTs using laser data
 - ♦ <0.1% loss at installation</p>
- Probed low energy threshold using neutron sources (AmBe, AmC)
- First muon candidate events!!

Water Phase

Muon candidate event in water

- Water filling completed and meets requirements
 - Attenuation length: >60m
 - ◆ Particle counts: ~800/20mL
 - ◆ Resistivity: ~4 MW cm
 - ◆ U/Th<10-15 g/g
 - ◆222Rn<10 mBq/m3
 - ◆226Ra<10 uBq/m3
- Currently filling with LS, expected to complete by end of summer

Filling

- JUNO is a next-generation, precision, multipurpose experiment with a rich physics program:
 - Neutrino oscillations
 - Supernovae
 - Geoneutrinos
 - Solar neutrinos
- Using its reactor $\bar{\nu}_e$ dataset:
 - NMO measurement to 3σ with about 6 years of data-taking
 - Sub-percent precision for $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} with as little as O(100) days of data
- Currently in filling stage LS data-taking starting this year!

Thank you!

JUNO

BACKUP

- Comprehensive calibration strategy
 - Gamma/neutron sources, cosmogenic ¹²B and • UV laser
 - Multi-positional source deployment \blacklozenge
- SPMTs serve as linear reference for LPMT nonlinearity
 - Operate in photon-counting mode for ~1-10 MeV
- Dual Calorimetry Calibration compares LPMT charge to SPMT charge under same source
 - Channel-wise LPMT charge vs. total SPMT charge
 - UV laser energies span region of interest •
 - Gamma sources match time profile of neutrino (positron) signal
 - Absolute energy scale uncertainty <1%

Calibration

- With its short baseline, TAO has great potential in sterile oscillation searches
 - Sensitivity improved by virtual segmentation of detector

JUNO-TAO Physics Reach

Δm_{31}^2	1σ (%)		Δm_{21}^2	1σ (%)]
Statistics	0.17		Statistics	0.16	
Reactor:			Reactor:		
- Uncorrelated	< 0.01		- Uncorrelated	0.01	
- Correlated	0.01		- Correlated	0.03	
- Reference spectrum	0.05		- Reference spectrum	0.07	
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14	
Detection:			Detection:		
- Efficiency	0.01		- Efficiency	0.02	
- Energy resolution	< 0.01		- Energy resolution	0.01	
- Nonlinearity	0.04		- Nonlinearity	0.05	
- Backgrounds	0.04		- Backgrounds	0.18	
Matter density	0.01		Matter density	0.01	
All systematics	0.08		All systematics	0.27	
Total	0.19		Total	0.32	
		.0 0.1	-	0	.0 0.2

$\sin^2 \theta_{12}$

Statistics	
Reactor:	
- Uncorrelated	
- Correlated	
- Reference spect	r
- Spent Nuclear F	u
- Non-equilibrium	
Detection:	
- Efficiency	
- Energy resolutio	r
- Nonlinearity	
- Backgrounds	
Matter density	
All systematics	
Total	

- Updated treatment of systematics
 - Values for 6 year exposure shown
- Rate systematics mitigated by spectral shape constraint on normalization

Systematics

%

%

$\sin^2 \theta_{13}$	1σ (%)			
Statistics	8.94]
Reactor:				
- Uncorrelated	2.53			
- Correlated	6.83			
- Reference spectrum	3.48			
- Spent Nuclear Fuel	1.55			
- Non-equilibrium	2.65			
Detection:				
- Efficiency	5.81			
- Energy resolution	0.39			
- Nonlinearity	2.09			
- Backgrounds	4.89			
Matter density	0.98			
All systematics	8.16			
Total	12.11			
	() !	5 %	10
			/0	

24

Invisible Neutron Decay

C. Jiang CoSSURF 2024

