nEDMSF - a New Cryogenic Search for the Neutron Electric Dipole Moment

neutron EDM with SuperFluid ⁴He (and ³He)

Paul Huffman for the nEDMSF Collaboration

Thanks to Kent Leung (Montclair St) for slides

nEDMSF: UCNs + superfluid ⁴He + polarized ³He

- Two cell setup with E-field relative to B-field opposite in each cell.
- > 95 % polarized ³He loaded into cell (dissolved in isotopically-pure superfluid ⁴He at 0.4 K).
- ³He serves as a comagnetometer and UCN spin analyzer

Golub/Lamoreaux

nEDMSF's Approach

- Funding for the "legacy" nEDM@SNS was cancelled by US Department of Energy (Office of Science) in Nov. 2023
 - Idea proposed in 1995 (Golub/Lamoreaux)
 - Collaboration was formed in early 2000's
 - LANL -> SNS/ORNL
 - About half the apparatus was been constructed
 - Cancellation letter noted that the experiment had overcome "a number of impressive technical challenges ... and in some cases developing new technical solutions that have value on their own"
 - but ... a "low state of technical readiness for critical subsystems" remained

nEDMSF's Approach

- Based on the investment to date, we are investigating partnering with European collaborators to build up the measurement technique in a staged approach.
 - New international nEDMSF collaboration formed
 - Neutron sources: Institut Laue -Langevin (France) & European Spallation Source (Sweden)
 - Incorporate what we learn AND new ideas into subsequent steps

Institut Laue-Langevin

European Spallation Source

European Support

We [...] suggest an evolution of the project's achievements towards a larger international collaboration for a cryogenic neutron EDM measurement hosted at the best possible neutron source in the world.

[...] the U.S. contribution to the new collaboration would therefore be, in first order, the in-kind transfer of equipment as well as operational support for the U.S. groups to participate. [...] the US would remain the major player within the collaboration with corresponding weight in key decisions regarding project evolution.

We [...] give our strongest support for the future nEDMSF project [...]. Beam time proposals of this collaboration were recently evaluated by ILL's scientific subcommittee and the scientific excellence was clearly recognized. The subcommittee highlighted the strategical importance of this future-of-the-field-defining experiment and recommended ILL to support this program. The critical importance of such a global nEDM program is also endorsed by nuclear and particle physics communities within the NUPECC Long range plan and the European Strategy for Particle Physics.

Ken Andersen	Jacques Jestin	Helmut Schober	Giovanna Fragneto
ILL Director	ILL Science Director	ESS Director	ESS Science Director
Kon Arken	A.	Melon & Scholor	Marsh

Staged Approach

- Proof-of-principle tests for 3 key techniques
 - Phase 1 (Institut Laue-Langevin's PF1B cold neutron beam)
 - Ultracold Neutron production in superfluid & detection of n + ³He capture light in a (legacy) measurement cell (largely existing apparatus)
 - Phase 2 (Institut Laue-Langevin's PF1B cold neutron beam)
 - UCN production, detection of capture light & polarization (largely existing apparatus)
 - Phase 3
 - Superfluid HV test with Cavallo multiplier, realistic electrodes, measurement cell (significant existing apparatus)

International Collaboration for Phase I experiments at the Institut Laue-Langevin

1	Brad Filippone	Caltech
2	Skyler Degenkolb	Heidelberg University
3	Hanno Filter	Institut Laue Langevin
4	Tobias Jenke	Institut Laue Langevin
5	Michael Jentschel	Institut Laue Langevin
6	Oliver Zimmer	Institut Laue Langevin
7	Benoit Clément	Laboratoire de Physique Subatomique & Cosmologie
8	Kent Leung	Montclair State University
9	Robert Golub	North Carolina State University
10	Paul Huffman	North Carolina State University
11	Ekaterina Korobkina	North Carolina State University
12	Vince Cianciolo	Oak Ridge National Laboratory
13	Paul Mueller	Oak Ridge National Laboratory
14	John Ramsey	Oak Ridge National Laboratory
15	Andy Saunders	Oak Ridge National Laboratory

6	Weijun Yao	Oak Ridge National Laboratory
7	Maurits van der Grinten	Rutherford Appleton Laboratory
8	David Milstead	Stockholm University
9	Peter Fierlinger	Technical University of Munich
0	Robert Georgi	Technical University of Munich/FRM II
1	Thomas Neulinger	Technical University of Munich/FRM II
2	Florian Piegsa	University of Bern
3	Doug Beck	University of Illinois at Urbana-Champaign
4	Chen-Yu Liu	University of Illinois at Urbana-Champaign
5	Chris Crawford	University of Kentucky
6	Wolfgang Korsch	University of Kentucky
7	Brad Plaster	University of Kentucky
8	Valentina Santoro	University of Lund
9	Clark Griffith	University of Sussex
0	Steve Lamoreaux	Yale University

Staged Approach II

- Three major areas requiring further development
 - High voltage
 - Complete development of HV delivery, robust electrode material
 - LN₂ testing of Cavallo multiplier at LANL ongoing
 - Composite vessels
 - Vessel holding ~1400 L of superfluid helium in AC magnetic field (spin dressing)
 - Have started working with Rutherford Appleton Laboratory/Sussex to continue existing development
 - Helium-3 services
 - Completion of system to add polarized ³He, then remove it after measurement
- Many opportunities for new contributions!

Staged Approach III

- The physical scale of a superfluid experiment is difficult to accommodate at ILL
- Have started working with ESS collaborators on a possible beamline design
- Published ANNI beamline design has ~10 x flux of at SNS*
 - Engineering on beamline @ ESS started (March 2025)
 - Expect higher cold neutron flux (at 1 meV) c.f. SNS

nEDMSF: UCNs + superfluid ⁴He + polarized ³He

- Two cell setup with E-field relative to B-field opposite in each cell.
- > 95 % polarized ³He loaded into cell (dissolved in isotopically-pure superfluid ⁴He at 0.4 K).
- ³He serves as a comagnetometer and UCN spin analyzer

Golub/Lamoreaux

Roles of the Superfluid 4He

 Cold neutrons (1 meV, 12 K) scatter off phonons in superfluid ⁴He to become UCNs (< 160 neV, "2 mK")

Andersen et al. J. Phys. Condens. Matter (1994)

Roles of the Superfluid 4He

- "Super-thermal" because UCNs (≤ 2 mK) remain out of thermal equilibrium with the helium.
 - Dominant UCN loss is two-phonon scattering:

$$\tau_{\rm up,2-phonon} = (100 \,\mathrm{s} \,\mathrm{K}^7) \,T^{-7}$$

Golub & Pendlebury, Physics Letters A (1977)

- At T = 0.4 K, up-scattering (or "thermalization") $\tau_{up} \approx 20$ hr.
- Neutron absorption by ⁴He is zero in isotopically pure ⁴He.

Roles of the Superfluid 4He

 Superfluid ⁴He scintillates at ~ 80 nm (EUV) which is used to detect n-³He capture events

- ³He atoms scatter off phonons
 - mean-free-path ~ $T^{7.5}$
 - important for key "false EDM" systematic control

How Does the Experiment Work?

- Load two measurement cells with polarized ³He and polarized UCN
- Strong E field, weak B field
- Rotate spins and perform a precession measurement
- Two different techniques for measuring the EDM

Measurement Cells

- ID: 7.5 cm (W), 10 cm (H), 40 cm (D) rel. to beam.
- Inner walls: deuterated PS + d-TPB (for fluorescent properties to detect 80 nm scintillation light).
- Neutron wall potential = 170 neV
- Goal wall loss τ_{cell} = 2,000 s

$$\tau_{\beta+cell} = \left(\tau_{\beta}^{-1} + \tau_{cell}^{-1}\right)^{-1} = 610 \,\mathrm{s}$$

Measurement Cells

 Last cell tested at LANL UCN source had τ_{β+cell} of 570 ± 20 s. (Single exponential decay only observed)

NC STATE

How Does the Experiment Work?

- Load two measurement cells with polarized ³He and polarized UCN
- Strong E field, weak B field, in a well controlled environment.
- Rotate spins and perform a precession measurement
- Two different techniques for measuring the EDM

- B₀ system complete and tested at 4K
- Magnetic shield
 house complete

NC STAT

 Spin-dressing coils designed, not constructed

Magnetic Shield House

Electric Field System

- High-voltage ~[600 kV]
- A direct feedthrough is not practical (large vacuum/cryogenic feedthroughs will breach Faraday cage shielding the SQUIDs)
- Use Cavallo technique that utilizes induction and a moving electrode to attain the desired electric field using a 50 kV feedthrough.

How Does the Experiment Work?

- Load two measurement cells with polarized ³He and polarized UCN
- Strong E field, weak B field, in a well controlled environment.
- Rotate spins and perform a precession measurement
- Two different techniques for measuring the EDM

Two Measurement Techniques

• Free Precession

Dressed Spin

$$\gamma^{\text{eff}} = \gamma J_0 (\gamma B_{\text{RF}} / \omega_{\text{RF}})$$

Free Precession

 σ (parallel) < 10² b σ (opposite) ~ 10⁴ b

• $1 - \vec{p}_3 \cdot \vec{p}_n = 1 - p_3 p_n \cos[(\gamma_n - \gamma_3)B_0 + 2dE] t$

 3 He + n \rightarrow t + p

- Detect ³He precession rate with SQUIDS.
- |γ_n-γ₃| = |γ₃|/10 Sensitivity to magnetic fields is reduced by an order of magnitude!
- Fractional concentration needed: $x = {}^{3}\text{He}/{}^{4}\text{He} \sim 10^{-10} \text{ (n}_{3} \approx 2 \text{ x } 10^{12} \text{ cm}^{-3}\text{)}$

Dressed Spin

- Spins of UCN and ³He precess in a plane perpendicular to the holding field
- Oscillating magnetic field perpendicular to holding field causes an oscillation in the spin direction relative to this plane and thus modifying the precession frequency
- UCN and ³He precession frequencies can be made identical, so-called "critical dressing".
- Increases the statistical precision by ~x2 and reduces certain systematic effects.

$$\gamma^{\rm eff} = \gamma J_0 (\gamma B_{\rm RF} / \omega_{\rm RF})$$

Systematics

 From interaction between the motional field and magnetic field gradients ("geometric-phase v x E induced false EDM")

NC STAT

 Can change ³He-phonon scattering mean-free-path by changes in superfluid temperature:

$$\lambda_{3\mathrm{He}} \approx 0.077 \,\mathrm{cm} \times \left(\frac{0.45 \,\mathrm{K}}{T}\right)^{15/2}$$

• Can tune temperature to make false EDM zero by scanning *T* !

Statistical Sensitivity

 $\sigma(d_n) \sim \frac{\hbar}{2\alpha ET\sqrt{N}}$

E = electric field	75 kV/cm in superfluid ⁴ He @ ~ 2 atm pressure
	vs ~ 10 kV/cm in vacuum

 $\alpha = \text{polarization contrast}$ (UCN & ³He polarization ~ 98%)

T = precession time	(we can use 1000 s vs. ~ 200 s for room temp.	
	experiments)	

 $N = \frac{\text{no. detected}}{\text{neutrons}}$ 2-3x improvement on running/close-to-running 10⁻²⁷ e.cm experiments. We have high-density in small cells which reduces systematics (see later)

Predicted sensitivity: 300 live days of data (e.g. 3 years running) $\sigma(d_n) = 1.7 \times 10^{-28} \, e \cdot \mathrm{cm}$

Conclusions

- The cryogenic UCN + ³He + superfluid scheme offers many advantages to reach 10⁻²⁸ e•cm sensitivity
- We are exploring a reformulation of the experiment with our European colleagues using a staged approach
- Significant amount of show-stoppers have been solved and a many key components of the apparatus exists

Legacy Experiment Apparatus

Main subsystems

- 1. Superconducting magnet and shield: $B_0 = 1-3 \mu T + flip$, trim & *dressing* coils (Caltech, UK, ORNL, ...)
 - Large (5 x 5 x 7 m³) magnetically shielded enclosure
- 2. Central detector system: acrylic measurement cells, HV, light collection, SQUIDS (LANL, ORNL, Caltech, Montclair, ...)
 - Dilution refrigerator I: ~75 mW @ 250 mK
- 3. Polarized ³He system: atomic beam source, injection, purification (UIUC, MIT, ...)
 - Dilution refrigerator II: ~75 mW @ 250 mK
- 4. Cryostat vessels: aluminum, composite (ORNL, ...)
- 5. Neutron transport (UK, ORNL, ...)
- 6. DAQ, slow controls (ORNL, ...)
- 7. Simulation (ORNL, UK, Caltech, Montclair...)
- 8. Systematics and operational systems apparatus (NCSU, Caltech, Montclair ...)

Hardware Status: Magnet System

 $B_0 \cos\theta$ coil

Magnet system closed for cold test at ORNL

Completed $B_{\mbox{\tiny 0}}$ coil, sc shield, vacuum chamber at ORNL

Magnet system in cold beam test at ORNL (summer '23, '24)

Completed magnetic shielded room at Imedco: Hägendorf, CH

Hardware Status: Central Detector System

Completed cryostat top flange, tail for CDS testing

Half-scale HV test (T=0.4 K)

Measurement cell

Small scale HV N. S. Phan, et al *J. Appl. Phys.* 129, 083301 (2021)

OVC composite vessel

Full-size stainless Cavallo electrodes

SiPM light collection

• To do: final electrode material choice & full-sized multilayered cells with thin windows

Hardware Status: Polarized ³He System

Dilution refrigerator/test cryostat

Dilution refrigerator + film burner (75 mW at 250 mK)

Atomic beam source

Nuclepore filter: magnetic particles

To do: injection system commissioning