Ultra-peripheral collisions: the energy frontier for photon physics

Spencer R. Klein, LBNL

UPCs: a tool to study the photon energy frontier QED: dilepton production Low-x partons in protons and nuclei Beyond the Standard Model: axions and such γp and γA as 'small systems' A peek forward and some conclusions

See also the talk Monday by Ashik Ikbal Sheikh

Way too many recent results to cover Focus on experiment Apologies to authors that I neglect

Ultra-peripheral collisions (UPCs)

Heavy nuclei carry strong electric and magnetic fields

 Lorentz contracted E and B fields are perpendicular -> treat as nearly-real virtual photons

+ $E_{max} = \gamma hc/b$

Photonuclear interactions and two-photon interactions ion

- Most visible when b>~2R_A, so there are no hadronic interactions;
 - Also seen in hadronic heavy-ion collisions

Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy $W_{\gamma p}$	24 GeV	~80 GeV	700 GeV	~3000 GeV
Max γγ Energy	6 GeV	~100 GeV	200 GeV	~1400 GeV

*LHC at full energy √s=14 TeV/5.6 TeV

10n

ion

ion

Why UPCs?

- A technique to study reactions involving photons at the energy frontier
 - Maximum CM energy $W_{\gamma p} \sim 3 \text{ TeV}$ for pp at the LHC
 - ~ 10 times higher in energy than HERA
 - Photonuclear Interactions
 - Nuclear structure at low-x
 - Bjorken-x down to a few 10⁻⁶ at moderate Q²
 - Exclusive interactions access transverse distribution of partons and event-by-event fluctuations
 - Two-photon interactions
 - **Dilepton prod**uction, $\gamma\gamma$ ->W⁺W⁻, $\gamma\gamma$ -> $\gamma\gamma$
 - Tau anomalous magnetic moment from γγ->τ⁺τ⁻
 - New particle searches (axions), etc.

α_{EM} ~ 1/137, so reactions are cleaner than in hadroproduction
 "Precision" measurements with 5-10% uncertainties

γγ -> Dileptons

- Results from ALICE, ATLAS & STAR
 - e⁺e⁻ μ⁺μ⁻ and τ⁺τ⁻
- Data agrees with lowest order QED
 - STARlight & SuperChic Monte Carlos
 - SuperChic includes interactions inside the two nuclei
 - But still with b>2R_A
 - Data is between 2 predictions
 - No need for higher order corrections to cross-section, although Zα ~ 0.6
 - Exception Final state radiation causes acoplanar events

10n

Calculations account for additional photon exchange

Nuclear excitation...

ATLAS: M. Dyndal, at ICHEP 2024

4

Probing nuclear structure at low-x

Single-gluon interactions (at LO):

- γ + g -> open charm or dijets
 - Theoretically clean
 - Many experimental details
 - Direct vs. resolved contribution
- Vector meson photoproduction
 - Exclusive J/ψ -> II etc. is experimentally easy
 - Compare gluon densities in p and A, so theoretical uncertainties cancel
 - Coherent vector mesons probe transverse distribution of target partons
 - Incoherent production probes event-by-event fluctuations
- Additional photon exchange adds complications

Probing nuclear structure at low x

- Probes gluons at low Bjorken-x
 - $x \sim M_{xx}/2\gamma m_p \exp(y)$ and $Q^2 \sim (M_{xx})^2$
 - Charm quark mass gives hard scale
- CMS D⁰ cross sections are ~ below CTEQ18 FONLL calculations, but ~ below/consistent with + ePPS21 nPF & nNNPDF 3.0 +FONLL

Gluon distributions from ATLAS dijets

Dijets with H_T > 35 GeV

- Scalar jet momentum sum
- Explicit corrections for additional photon exchange
- Unfolding to get 3-d spectra
 - ♦ Y_{jets}, M_{jj}, H_T
 - ~ 5% systematic uncertainties
- 5*10⁻³ < x < ~0.5
- Compared with nCTEQ, nNNPDf, EPPS21 and TUJU21
 - Models are generally a bit below the data at small x

Vector Meson photoproduction

- Large cross-sections
 - Probe gluon distributions and fluctuations
- Produced via colorless 'Pomeron exchange'
 - Require >=2 gluon exchange for color neutrality
 - Gluon ladder

- Light meson production usually treated via vector meson dominance model
 - ρ , direct $\pi^+\pi^-$, ω , ρ' observed at RHIC & LHC
- Heavy meson production treated with pQCD
 - J/ψ, ψ', Y(1S), Y(2S), and Y(3S)
- Rapidity maps into photon energy
 - $k = M_{V}/2exp(\pm y)$
 - Twofold ambiguity which nucleus emitted the photon?
 - Cross-section is convolution of bi-directional photon flux with $\sigma(\gamma A)$

ρ^0 photoproduction

- High precision mass spectra: 294K (20M) exclusive π⁺π⁻ from STAR (LHCb)
- Mass spectra fit by ρ^0 + direct $\pi\pi$ + ω -> $\pi\pi$ + high mass state
 - M = 1653 MeV, Γ =164 MeV Consistent with $\rho_3(1690)$?
 - LHCb also sees intermediate mass resonance

On tape (on tap?): >10 M event samples from multiple expts.

STAR, Phys. Rev. C 96, 054904 (2017); LHCb, arXiv:2506.06250

ϕ photoproduction

- The ϕ has an intermediate mass
 - Highlighted in Electron-Ion Collider planning
 - $Q^2 \sim M^2$, so the ϕ should exhibit more saturation than the J/ ψ
- K[±] from ϕ ->K⁺K⁻ have p ~ 130 MeV/c
 - β ~0.2 -> Large dE/dx and quick stopping -> challenging
- Cross-section compatible with Glauber calculations
 - Accounts for nucleon positions & multiple γN interactions
- Direct K⁺K⁻ also seen, ϕ : direct KK ratio similar to ρ : direct $\pi\pi$

VM photoproduction in pQCD

Leading order pQCD, via 2 gluons

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\gamma^* p \to J/\psi \ p\right)\Big|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x,\bar{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2}\right)$$

With $\bar{Q}^2 = (Q^2 + M_{J/\psi}^2)/4$, $x = (Q^2 + M_{J/\psi}^2)/(W^2 + Q^2)$

- Vector meson mass provides hard scale
- Some caveats
 - NLO 'correction' larger than LO amplitude & opposite sign
 - "Standard" parton distributions have too few low-x, low-Q² gluons, suppressing the LO term
 - More gluons would increase the LO term
 - Large contribution from quarks
 - High scale sensitivity
- Measure shadowing by comparing σ(γA) to σ(γp)

K. Eskola et al., Phys., Rev. C 106, 035202 (2022)

σ(γp-> J/ψ p)

- Data up to $W_{\gamma p}$ = 1.5 TeV -5 times the HERA maximum
 - ♦ Bjorken-x down to a few 10⁻⁶

- Data follows a power law (w/ possible slight downturn
 - At Lowest Order, if $g(x) \sim x^{-\lambda}$, then $\sigma(\gamma p -> J/\psi p)$ is also a power law
 - No evidence for a kink from onset of saturation
 - + At NLO, situation is more complicated

ALICE, PRD **108**, 112004 (2023)

J/ψ & ψ ' photoproduction on lead

- Shadowing should be describable w/ pQCD
- Tension between ALICE & ATLAS @ midrapidity
 - Due to multiple interactions between an ion pair?
 - AA->AAeeJ/ψ
 - Tension between mid-rapidity and forward data
- ALICE sees a bit more shadowing than leading twist, while ATLAS sees pretty good agreement
- ALICE agrees with EPS09 parameterization

Can provide significant constraints

ALICE, Eur. Phys. J. 81, 712 (2021); ATLAS-CONF-2025-003

Nuclear Shadowing

- Compare coherent photoproduction cross-sections on proton and ion targets
 - Many uncertainties cancel
- Data from ALICE, CMS, STAR and Fermilab (+LHCb for p)
- S_{Pb}(x) < 1 -> clear shadowing
- To LO, S_{Pb}(x) ~ g(x)²
- Data is consistent with leading twist approximation

V. Guzey & M. Strikman, PRC **110**, 045201 (2024)

Gluon spatial distribution and fluctuations

- The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
 - Configuration = position of nucleons, gluonic hot spots etc.
- Coherent: Nucleus remains in ground state
 - Impact parameter and p_T are conjugate variables. Fourier transform of dσ/dt gives transverse distribution of (gluon) targets
- Incoherent = Total coherent;
 - Square of sums minus sum of squares-> sensitive to fluctuations

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections (}\Omega\text{)}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes (}\Omega\text{)}$$
$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$$

Good and Walker, Phys. Rev. D 120, 1857 (1960); Miettinen and Pumplin, Phys. Rev. D 18, 1696 (1978)

Good-Walker caveats

- The identification "Coherent -> Nucleus remains in ground state" fails in at least two cases
 - Photoproduction accompanied by nuclear excitation
 - Coherent photoproduction in peripheral collisions
- Photoproduction cross-sections are consistent with amplitude addition, despite the excitation/destruction.
- Excitation is exothermic. At low |t|, the energy transfer may be too small to excite a target.
 - Lead requires 2.6 MeV for excitation
 - Gold only needs 77 keV.
- They should have different low-|t| behavior. In contrast, at a partonic level, they are similar.

STAR, PRC 77, 034910 (2008); SK, PRC 107, 055203 (2023).

Coherent photoproduction p_T spectrum

- p_T distribution comes from nuclear form factor
 - $< p_T > \sim -few hbar/R_A \sim 30 MeV/c$ for heavy nuclei
 - Small contribution from photon p_T
- Either nucleus can be photon emitter or target
 - Indistinguishable -> Add amplitudes
- $\sigma \sim |\mathsf{A}_1 \mathsf{A}_2 \mathsf{e}^{\mathsf{i} \mathsf{p} \cdot \mathsf{b}}|^2$
 - minus since $\rho, \omega, \phi, J/\psi$ are $J^{PC} = 1^{--}$
 - + sign in pbar p collisions
- σ suppressed for p_T < h/
- Effect is angle dependent
 - photon linear polarization follows b
 - $\pi^+\pi^-$ plane is near E field (b)
 - + $P(\theta) \sim \cos^2(\theta)$
 - Interference largest when p_π || p_ρ

STAR, PRL **102**, 112301 (2009)

H

(transverse view)

b,E

Tomographic measurement of radii

- Fit coherent $d\sigma(AA->Aa\pi^+\pi^-)/dt$ with nuclear density distribution and Glauber calculation
 - Inclusion of interference in fit of do/dt permits precision hadronic-radius measurements.
 - Expected angular modulation seen
 - ◆ R(¹⁹⁷Au) = 6.53 ± 0.06 fm
 - ♦ R(²³⁸U)=7.29 ± 0.08 fm

STAR, Science Adv.abq3903 (2022)

Nuclear shadowing & shape changes

- ALICE has studied $d\sigma/dt$ for coherent J/ ψ photoproduction
 - J/ψ is heavy enough that pQCD should be applicable
- Shape is inconsistent with a Woods-Saxon distribution
- Effective size is smaller, consistent with predictions from leading twist approximation or a saturation model

ALICE, PLB 817, 136280 (2021)

Incoherent J/ ψ photoproduction

- Probes event-by-event fluctuations in the nuclear configuration
 - Quark/gluon transverse positions
- Use Walker-Good formalism:
- HERA data on γ*p->J/ψ p indicates protons are quite lumpy/stringy
 - Reproduces most v₂ & v₃ results in pA

H. Mäntysaari, QM17; Mäntysaari & Schenke PRD 94, 034042 (2016)

UPCs in peripheral collisions

- Photonuclear and $\gamma\gamma$ reactions do not disappear when b < $2R_A$
 - Rates are reduced due to lower photon flux inside nucleus
- How large is the target coherence region for J/ψ photoproduction?
 - All nucleons, or just spectators?

- Data mildly supports non-participation of participants
 - Participants may lose energy before interacting, reducing σ
- Interference at larger p_T since b is small

Apparent nuclear size unchanged (i. e. including participants?)

ALICE, arXiv:2409.11940; STAR, PRL 123, 132302 (2019)

$\gamma\gamma$ -> $\gamma\gamma$ and beyond the standard model

Two main channels

- Box diagram all charged particles
 - Including BSM particles
 - Cross-section in agreement with Standard Model
- Via axion-like particle resonance
 - + Peak at $M_{\gamma\gamma}$ = Ma
 - Limits set by CMS and ATLAS

γA Collisions as a small system

- QGP-like behavior has been observed in small systems where it was not expected: pA and high multiplicity pp
- γA collisions are another small system
- π^{\pm} spectra agree with DPMJET simulations.
 - Some strangeness enhancement
- Baryon enhancement at intermediate p_T
- Similar to other small systems

ALICE Quark Matter 2025, ATLAS arXiv:2503.08181

Looking ahead

- LHC Run 3 brings many detector upgrades
 - ALICE streaming DAQ eliminates trigger bottleneck
 - Light meson samples 100 times larger than currently analyzed
 - LHCb and the ALICE FoCal (LHC Run 4) will expand forward coverage and provide data down to x < 10⁻⁵
- Expect solid (single-gluon) parton distributions down to x<10⁻⁴⁻⁵
 - Over a wide range of Q² to map out saturation as f(Q²)
- Vector meson studies will probe shape modifications due to shadowing, and probe partonic fluctuations
 - Key for saturation studies
- In ~ 2035, the new ALICE 3 detector will provide full coverage out to coverage to |η|<4 at low p_T
- Oxygen running at RHIC and LHC probes another intermediatesized nuclei
- Longer term, the proposed fcc could reach Bjorken-x ~10⁻⁷

UPCs & the Electron Ion Collider

- The Electron-Ion collider is an ep/eA collider being built at Brookhaven National Laboratory
- Both UPCs and the EIC use photons to probe protons/nuclei

	UPCs	Electron-Ion Collider		
W _{γp} (max)	3 TeV	140 GeV		
$W_{\gamma N}$ (max) Heavy Ion	700 GeV	100 GeV		
Photon Q ²	Real only	Real + Virtual		
Polarization	Linearly polarized photons	Electrons, protons, light ions		
lon targets	p, Pb, Au, Xe, O	Wide range of nuclei, including d, t, other light ions		
Usage	1 month/yr at CERN	Dedicated, will run many nuclei		
Complementary too being you the FIC will offer for more precision				

Complementary techniques: the EIC will offer far more precision, but UPCs have a larger reach in energy (or in Bjorken-x)

Conclusions

- UPCs are the energy frontier for electromagnetic interactions.
- Measurements of γγ-> II agree well with LO QED calculations, proving that UPCs can make precise measurements.
- Photoproduction of dijets and open charm probe gluon shadowing in heavy nuclei. Dijet data appears to be slightly below current nuclear parton distribution predictions.
- σ(γp->J/ψp) is close to a power-law, without clear evidence of saturation.
 Comparisons of coherent and incoherent J/ψ production prefer a lumpy proton over a smooth one.
- σ(γPb-> J/ψ Pb) and σ(γPb-> ψ' Pb) exhibit shadowing, at/below the leading-twist predictions.
- Light-by-light scattering ($\gamma\gamma \rightarrow \gamma\gamma$) has been observed, and limits set on axion production.
- The small systems formed in γA interactions behave similarly to other systems with similar multiplicities.
- In the near future, we expect very large data sets for a variety of uses.

Backup

UPCs and LHC luminosity

- σ[PbPb(γγ) -> (Pbe⁻) Pb e⁺] ~ 280 b @ LHC
- Single-electron lead has charge:mass ratio reduced by 1/82
- The (Pbe⁻) beam strikes the beampipe 135 m downstream from the magnet
 - At L = 10²⁷/cm²/s, the beam deposits
 23 Watts
- LHC magnet quench from BFPP demonstrated!
 - L_{max}=2.3*10²⁷/cm²/s
- Luminosity limit for LHC & potentially fcc
 - Some mitigation possible by orbit bumps.

-0.06

The dipole approach

- Needed to incorporate transverse size into calculation
- Start with basics: $\sigma = |\langle \Psi_{\gamma} | \mathbf{M} | \Psi_{V} \rangle|^{2}$

- Treat the qq pair as a dipole with size r
 - Need VM and photon wave functions, matrix element as f(r)
 - $\sigma \sim r^2$; r scales with 1/Q, but relationship is not simple
 - Different matrix elements for different nuclear models
 - pQCD, shadowing, colored glass condensate, etc.

$$A(K,\Omega) = 2i \int d^2 \mathbf{r}_T \frac{dz}{4\pi} d^2 \mathbf{b}_T e^{-i\mathbf{b}_T \cdot \mathbf{k}_T/\hbar} \\ \times \Psi^*(\mathbf{r}_T, z, Q^2) \Psi_V(\mathbf{r}_T, z, Q^2) N_\Omega(\mathbf{r}_T, \mathbf{b}_T)$$

- Dipole approach allows impact-parameter dependent calculations
 - Can calculate dσ/dt for different nuclear conditions
 - Different effective target shapes at different x,Q²

ALICE PbPb-> J/ ψ at $\sqrt{s_{NN}}$ =5.02 GeV

- p_T spectrum measured out to 2.5 GeV/c
 - Coherent (Pb), incoherent (single N) & nucleon dissociation seen
- $\sigma_{coherent}$ indicates gluon shadowing ~ 0.8
 - Consistent with EPS09 model
 - Consistent with leading twist approximation

Also: J/ ψ in pPb @ 8 GeV, J/ $\psi \rightarrow p\bar{p}$, $\psi' \rightarrow J/\psi \pi^+\pi^-$

E. Kryshen [ALICE], QM17

 J/ψ rapidity

ALICE coherent ρ^0 cross-section

|y|<0.5

- σ below colored dipole model
- σ below generalized VDM model
 - With nuclear shadowing correction
- σ in agreement with STARlight
- Consistent results for events with and without neutrons
 - Factorization works!
 - Photon emission is independent
- Xe data shows $\sigma \sim A^{0.96 \pm 0.02}$

50

100

150

OĿ

0

ALICE Pb-Pb UPC $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

 $Pb-Pb \rightarrow Pb + Pb + \rho^0$

do/dy

(qu)

₆₀₀ رام

ALICE Pb-Pb UPC $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

ALICE] JHEP 06 (2020) 035; Phys.Lett.B 820 (2021) 136

200

"Imaging" the nucleus

- Target (gluons?) density is the Fourier transform of dσ/dt
 - ♦ |t|_{max} = 0.06 GeV²
- 2-d Fourier (Hanckel) tranform
 - Targets, integrated over z
 - 2-d avoids 2-fold ambiguity
- Blue band shows effect of varying |t|_{max} from 0.05 0.09 GeV²
 - Variation at small |b| may be due to windowing (finite t range)
- Negative wings at large |b| are likely from interference
 FWHM=2*(6.17±0.12 fm)

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

ρ^0 cross-section

- Cross-section is convolution of Weizsacker-Williams photon flux with σ(γA->VA)
 - Calculate σ(γA->VA) with a Glauber calculation, using HERA data (or HERA data tied to first principles) as input
- ALICE & STAR cross-sections are half the predictions of a quantum Gribov-Glauber calculation ("GDL")
 - "Shadowing" from cross-section fluctuations
 - + Higher mass qq -> smaller dipole size -> smaller σ

γ**p->**Yp

Y(1S), Y(2S) & Y(3S) resolved Good agreement with NLO calculation ($Q^2 \sim 25 \text{ GeV}^2$) Higher Q^2 -> less sensitivity to some theoretical uncertainties Same calculations match J/ Ψ & Y data, at different Q^2 No evidence for saturation at low Q^2

ALICE ρ^0

- Trigger on charged particles (neutrons not required)
- Coherent peak for p_T< ~ 100 MeV/c
- Dip at p_T=120 MeV/c not understood
- Mass peak consistent with ρ^0 , with possible hint of $\gamma\gamma$ ->f₂(1270)-> $\pi\pi$

ALICE, JHEP **1509**, 095 (2015) & J. Adams. Presented at DIS 2016