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Way too many recent results to cover 
 Focus on experiment
 Apologies to authors that I neglect 1

UPCs: a tool to study the photon energy frontier
QED: dilepton production
Low-x partons in protons and nuclei
Beyond the Standard Model: axions and such
gp and gA as ‘small systems’
A peek forward and some conclusions

 



Ultra-peripheral collisions (UPCs)
 Heavy nuclei carry strong electric and magnetic fields

 Lorentz contracted E and B fields are perpendicular -> 
treat as nearly-real virtual photons
 Emax = ghc/b

 Photonuclear interactions and two-photon interactions
 Most visible when b>~2RA, so there are no hadronic 

interactions;
 Also seen in hadronic heavy-ion collisions

Energy AuAu 
RHIC

pp RHIC PbPb LHC pp LHC

Photon energy 
(target frame)

0.6 TeV ~12 TeV 500 TeV ~5,000 TeV

CM Energy Wgp 24 GeV ~80 GeV 700 GeV ~3000 GeV
Max gg Energy 6 GeV ~100 GeV 200 GeV ~1400 GeV

*LHC at full energy √s=14 TeV/5.6 TeV 2

Xg
P

ion

ion

g

g

ion

ion

l+
l-



Why UPCs?
 A technique to study reactions involving photons at the energy 

frontier
 Maximum  CM energy Wgp ~  3 TeV for pp at the LHC

  ~ 10 times higher in energy than HERA
 Photonuclear Interactions

 Nuclear structure at low-x
• Bjorken-x down to a few 10-6 at moderate Q2

• Exclusive interactions access transverse distribution of partons and 
event-by-event fluctuations

 Two-photon  interactions
 Dilepton production, gg->W+W-, gg->gg

• Tau anomalous magnetic moment from gg->t+t-

 New particle searches (axions), etc.
 aEM ~ 1/137, so reactions are cleaner than in hadroproduction

 “Precision” measurements with 5-10% uncertainties
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gg -> Dileptons
 Results from ALICE, ATLAS & STAR

 e+e- µ+µ- and t+t- 
 Data agrees with lowest order QED 

 STARlight & SuperChic Monte Carlos
 SuperChic includes interactions    

inside the two nuclei
• But still with b>2RA

 Data is between 2 predictions
 No need for higher order corrections    

to cross-section, although Za ~ 0.6
• Exception –  Final state radiation 

causes acoplanar events
 Calculations account for additional 

photon exchange
 Nuclear excitation…

4ATLAS: M. Dyndal, at ICHEP 2024

g

g
ion

ion
l+
l-



Probing nuclear structure at low-x
 Single-gluon interactions (at LO): 

 g + g -> open charm or dijets
 Theoretically clean
 Many experimental details

• Direct vs. resolved contribution
 Vector meson photoproduction

 Exclusive J/y-> ll etc. is experimentally easy
 Compare gluon densities in p and A, so 

theoretical uncertainties cancel
 Coherent vector mesons probe                

transverse distribution of target partons 
 Incoherent production probes                             

event-by-event fluctuations
 Additional photon           

exchange adds complications
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Probing nuclear structure at low x
 Probes gluons at low Bjorken-x 

 x ~ Mxx/2gmp exp(y) and Q2 ~ (Mxx)2

 Charm quark mass gives hard scale
 CMS D0 cross sections are ~ below CTEQ18 FONLL 

calculations, but ~ below/consistent with + ePPS21 nPF & 
nNNPDF 3.0 +FONLL

6
CMS-PAS-HIN-25-002



Gluon distributions from ATLAS dijets
 Dijets with HT> 35 GeV

 Scalar jet momentum sum
 Explicit corrections for 

additional photon exchange
 Unfolding to get 3-d spectra

 Yjets, Mjj , HT

 ~ 5% systematic uncertainties
 5*10-3 < x < ~0.5
 Compared with nCTEQ, 

nNNPDf, EPPS21 and 
TUJU21
 Models are generally a bit 

below the data at small x

7ATLAS: PRD 111, 052006 (2025)



Vector Meson photoproduction
 Large cross-sections

 Probe gluon distributions and fluctuations 
 Produced via colorless ‘Pomeron exchange’

 Require >=2 gluon exchange for color neutrality
 Gluon ladder

 Light meson production usually treated via vector meson 
dominance model
 r, direct p+p-, w, r’ observed at RHIC & LHC

 Heavy meson production treated with pQCD
 J/y, y’,U(1S), U(2S), and U(3S)

 Rapidity maps into photon energy
 k = MV/2exp(±y)

 Twofold ambiguity – which nucleus emitted the photon?
 Cross-section is convolution of bi-directional photon flux with s(gA)
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r0 photoproduction
 High precision mass spectra: 294K (20M) exclusive p+p- from 

STAR (LHCb)
 Mass spectra fit by r0 + direct pp + w->pp + high mass state

 M = 1653 MeV, G=164 MeV - Consistent with r3(1690)?
 LHCb also sees intermediate mass resonance

 On tape (on tap?): >10 M event samples from multiple expts. 

STAR, Phys. Rev. C 96, 054904 (2017); LHCb, arXiv:2506.06250



f photoproduction
 The f has an intermediate mass

 Highlighted in Electron-Ion Collider planning
 Q2 ~ M2, so the f should exhibit more saturation than the J/y

 K± from f->K+K- have p ~ 130 MeV/c
 b~0.2 -> Large dE/dx and quick stopping -> challenging

 Cross-section compatible with Glauber calculations
 Accounts for nucleon positions & multiple gN interactions

 Direct K+K- also seen, f: direct KK ratio similar to r: direct pp

10
CMS, arXiv:2504.05193; LHCb-CONF-2024-006; ALICE: PRL 132, 222303 (2024) 



 Leading order pQCD, via 2 gluons

 With
 Vector meson mass provides hard scale

 Some caveats
 NLO ’correction’ larger than LO amplitude & opposite sign

 “Standard” parton distributions have too few low-x, low-Q2 gluons, 
suppressing the LO term

 More gluons would increase the LO term
 Large contribution from quarks
 High scale sensitivity 

 Measure shadowing by                                                        
comparing s(gA) to s(gp)                           

VM photoproduction in pQCD

11K. Eskola et al., Phys., Rev. C 106, 035202 (2022)



s(gp-> J/y p)
 Data up to Wgp= 1.5 TeV -5 times the HERA maximum

 Bjorken-x down to a few 10-6

 Data follows a power law (w/ possible slight downturn
 At Lowest Order, if g(x) ~ x-l, then s(gp->J/y p) is also a power law

 No evidence for a kink from onset of saturation
 At NLO, situation is more complicated

12ALICE, PRD 108, 112004 (2023)



J/y & y’ photoproduction on lead
 Shadowing should be describable w/ pQCD
 Tension between ALICE & ATLAS @ midrapidity

 Due to multiple interactions between an ion pair?
 AA->AAeeJ/y

 Tension between mid-rapidity and forward data
 ALICE sees a bit more shadowing than leading twist, 

while ATLAS sees pretty good agreement
 ALICE agrees with EPS09 parameterization

 Can provide significant constraints

13ALICE, Eur. Phys. J. 81, 712 (2021); ATLAS-CONF-2025-003



 Compare coherent photoproduction cross-sections on 
proton and ion targets
 Many uncertainties cancel

 Data from ALICE, CMS, STAR and Fermilab (+LHCb for p)
 SPb(x) < 1 -> clear shadowing
 To LO, SPb(x) ~ g(x)2

 Data is consistent with leading twist approximation

Nuclear Shadowing

V. Guzey & M. Strikman, 
PRC 110, 045201 (2024)
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Gluon spatial distribution and fluctuations
 The Good-Walker formalism links coherent and incoherent 

production to the average nuclear configuration and event-by-
event fluctuations respectively
 Configuration = position of nucleons, gluonic hot spots etc.

 Coherent: Nucleus remains in ground state
 Impact parameter and pT are conjugate variables.  Fourier transform 

of ds/dt gives transverse distribution of (gluon) targets
 Incoherent = Total – coherent; 

 Square of sums minus sum of squares-> sensitive to fluctuations

Average cross-sections (W)

Average amplitudes (W)

Incoherent is difference

Good and Walker, Phys. Rev. D 120, 1857 (1960); Miettinen and Pumplin, Phys. Rev. D 18, 1696 (1978) 



Good-Walker caveats
 The identification “Coherent ->  Nucleus remains in ground 

state” fails in at least two cases
 Photoproduction accompanied by nuclear excitation
 Coherent photoproduction in peripheral collisions

 Photoproduction cross-sections are consistent with amplitude 
addition, despite the excitation/destruction.

 Excitation is exothermic.  At low |t|, the energy transfer may be 
too small to excite a target.  
 Lead requires 2.6 MeV for excitation 
 Gold only needs 77 keV.  

 They should have different low-|t|                                     
behavior. In contrast, at a partonic level,                                                 
they are similar.

16STAR, PRC 77, 034910 (2008); SK, PRC 107, 055203 (2023).



Data (w/ fit)
 Noint
 Int
 Background

t (GeV2) = pT2

S T A R  

Coherent photoproduction pT 
spectrum

 pT distribution comes from nuclear form factor
 <pT> ~~few  hbar/RA ~ 30 MeV/c for heavy nuclei
 Small contribution from photon pT

 Either nucleus can be photon emitter or target
 Indistinguishable -> Add amplitudes

 s ~ |A1 - A2eip·b|2 

 minus since r,w, f, J/y are JPC = 1- -

 + sign in pbar p collisions
 s suppressed for pT < h/<b>
 Effect is angle dependent

 photon linear polarization follows b
 p+p-  plane is near E field (b)

 P(q) ~ cos2(q)
 Interference largest when pp || pr

17

17

b,E

(transverse view)

p+

p-

r

q

STAR, PRL 102, 112301 (2009)



Tomographic measurement of radii
 Fit coherent ds(AA->Aap+p-)/dt with 

nuclear density distribution and Glauber 
calculation
 Inclusion of interference in fit of ds/dt 

permits precision hadronic-radius 
measurements.
 Expected angular modulation seen

 R(197Au) =  6.53 ± 0.06 fm
 R(238U)=7.29 ± 0.08 fm

18STAR, Science Adv.abq3903 (2022) 



Nuclear shadowing & shape changes
 ALICE has studied ds/dt for coherent J/y photoproduction

 J/y is heavy enough that pQCD should be applicable
 Shape is inconsistent with a Woods-Saxon distribution
 Effective size is smaller, consistent with predictions from 

leading twist approximation or a saturation model

19

ALICE, PLB 817, 136280 (2021)



Incoherent J/y photoproduction
 Probes event-by-event fluctuations in the 

nuclear configuration
 Quark/gluon transverse positions

 Use Walker-Good formalism:
 HERA data on g*p->J/y p indicates       

protons are quite lumpy/stringy
 Reproduces most v2 & v3  results in pA

H. Mäntysaari, QM17; Mäntysaari & Schenke PRD 94, 034042 (2016)
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 Photonuclear and gg reactions do not disappear when b < 2RA
 Rates are reduced due to lower photon flux inside nucleus

 How large is the target coherence region for J/y photoproduction?
 All nucleons, or just spectators?

 Data mildly supports non-participation of participants
• Participants may lose energy before interacting, reducing s

 Interference at larger pT  since b is small
 Apparent nuclear size unchanged (i. e. including participants?)

UPCs in peripheral collisions

21
ALICE, arXiv:2409.11940; STAR, PRL 123, 132302 (2019)



gg->gg and beyond the standard model
 Two  main channels

 Box diagram – all charged particles
 Including BSM particles
 Cross-section in agreement with Standard Model

 Via axion-like particle resonance
 Peak at Mgg = Ma
 Limits set by CMS and ATLAS

22
CMS, arXiv:2412.15413
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gA Collisions as a small system
 QGP-like behavior has been observed in small systems 

where it was not expected: pA and high multiplicity pp
 gA collisions are another small system
 p± spectra agree with DPMJET simulations.

 Some strangeness enhancement
 Baryon enhancement at intermediate pT

 Similar to other small systems

23ALICE Quark Matter 2025, ATLAS arXiv:2503.08181



Looking ahead
 LHC Run 3 brings many detector upgrades

 ALICE streaming DAQ eliminates trigger bottleneck
 Light meson samples 100 times larger than currently analyzed

 LHCb and the ALICE FoCal (LHC Run 4) will expand forward coverage 
and provide data down to x < 10-5

 Expect solid (single-gluon) parton distributions down to x<10-4-5 

 Over a wide range of Q2 to map out saturation as f(Q2)
 Vector meson studies will probe shape modifications due to 

shadowing, and probe partonic fluctuations
 Key for saturation studies

 In ~ 2035, the new ALICE 3 detector will provide full coverage out to 
coverage to |h|<4 at low pT

 Oxygen running at RHIC and LHC probes another intermediate-
sized nuclei

 Longer term, the proposed fcc could reach Bjorken-x ~10-7

24



UPCs & the Electron Ion Collider
 The Electron-Ion collider is an ep/eA collider 

being built at Brookhaven National Laboratory
 Both UPCs and the EIC use photons to probe 

protons/nuclei

25

UPCs Electron-Ion Collider
Wgp (max) 3 TeV 140 GeV
WgN (max) Heavy Ion 700 GeV 100 GeV
Photon Q2 Real only Real + Virtual
Polarization Linearly polarized 

photons
Electrons, protons, light ions

Ion targets p, Pb, Au, Xe, O Wide range of nuclei, including d, 
t, other light ions

Usage 1 month/yr at 
CERN

Dedicated, will run many nuclei

Complementary techniques: the EIC will offer far more precision, 
but UPCs have a larger reach in energy (or in Bjorken-x)



Conclusions
 UPCs are the energy frontier for electromagnetic interactions.
 Measurements of gg-> ll agree well with LO QED calculations, proving 

that UPCs can make precise measurements. 
 Photoproduction of dijets and open charm probe gluon shadowing in 

heavy nuclei.  Dijet data appears to be slightly below current nuclear 
parton distribution predictions. 

 s(gp->J/yp) is close to a power-law, without clear evidence of saturation.   
Comparisons of coherent and incoherent J/y production prefer a lumpy 
proton over a smooth one.

 s(gPb-> J/y Pb) and s(gPb-> y’ Pb)  exhibit shadowing, at/below the 
leading-twist predictions.

 Light-by-light scattering (gg -> gg) has been observed, and limits set on 
axion production.

 The small systems formed in gA interactions behave similarly to other 
systems with similar multiplicities.

 In the near future, we expect very large data sets for a variety of uses.
26



Backup 
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UPCs and LHC luminosity
 s[PbPb(gg) -> (Pbe-) Pb e+] ~ 280 b @ LHC
 Single-electron lead has charge:mass ratio 

reduced by 1/82
 The (Pbe-) beam strikes the beampipe 135 

m downstream from the magnet
 At L = 1027/cm2/s, the beam deposits                   

23 Watts
 LHC magnet quench from BFPP       

demonstrated!
 Lmax=2.3*1027/cm2/s

 Luminosity limit for LHC & potentially fcc
 Some mitigation possible by orbit bumps.

IP
82+Pb

81+Pb

J. Jowett et al., IPAC 2016

Pb

Pb

g
e+

81+Pb
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The dipole approach
 Needed to incorporate transverse size into calculation
 Start with basics: s = |<Yg|M|YV>|2

 Treat the qq pair as a dipole with size r
 Need VM and photon wave functions, matrix element as f( r)
 s ~ r2; r scales with 1/Q, but relationship is not simple
 Different matrix elements for different nuclear models

 pQCD, shadowing, colored glass condensate, etc.

 Dipole approach allows impact-parameter dependent calculations
 Can calculate ds/dt for different nuclear conditions

 Different effective target shapes at different x,Q2



ALICE  PbPb-> J/y at √sNN=5.02 GeV
 pT spectrum measured out to 2.5 GeV/c

 Coherent (Pb), incoherent (single N) & nucleon dissociation seen
 scoherent indicates gluon shadowing ~ 0.8

 Consistent with EPS09 model
 Consistent with leading twist approximation

 Also: J/y in pPb @ 8 GeV, J/y→p𝑝̅, y’-> J/y p+p-

J/y rapidityDimuon pT (GeV) E. Kryshen [ALICE], QM17



ALICE coherent  r0 cross-section
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 |y|<0.5
 s below colored dipole model 
 s below generalized VDM model 

 With nuclear shadowing 
correction

 s in agreement with STARlight
 Consistent results for events with 

and without neutrons
 Factorization works!
 Photon emission is independent

 Xe data shows s~ A0.96 ± 0.02

ALICE] JHEP 06 (2020) 035; Phys.Lett.B 820 (2021) 136481



“Imaging” the nucleus
 Target (gluons?) density is the 

Fourier transform of ds/dt
 |t|max = 0.06 GeV2

 2-d Fourier (Hanckel) tranform
 Targets, integrated over z
 2-d avoids 2-fold ambiguity

 Blue band shows effect of 
varying |t|max from 0.05 - 0.09 
GeV2

 Variation at small |b| may be due 
to windowing (finite t range)

 Negative wings at large |b| are 
likely from interference

 FWHM=2*(6.17±0.12 fm)

Preliminary
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r0 cross-section
 Cross-section is convolution of Weizsacker-Williams 

photon flux with s(gA->VA)
 Calculate s(gA->VA) with a Glauber calculation, using 

HERA data (or HERA data tied to first principles) as input
 ALICE & STAR cross-sections are half the predictions of a 

quantum Gribov-Glauber calculation (“GDL”)
 “Shadowing” from cross-section fluctuations

 Higher mass qq -> smaller dipole size -> smaller s

L. Frankfurt et al., Phys.Lett. 
B752 51 (2016) 33



gp->Up
Forward dimuons with LHCb

U(1S), U(2S) & U(3S) resolved
Good agreement with NLO calculation  (Q2 ~ 25 GeV2)
 Higher Q2-> less sensitivity to some theoretical uncertainties
 Same calculations match J/Y  & Y data, at different Q2 

  No evidence for saturation at low Q2

U(1S)

R. McNulty [LHCb] ICHEP 2016 34

s(
gp

) [
pb

])

Mµµ (MeV)  Wgp (GeV)

x=2.4*10-5x=1*10-4



ALICE r0

 Trigger on charged particles 
(neutrons not required)

 Coherent peak for pT< ~ 100 
MeV/c

 Dip at pT=120 MeV/c not 
understood

 Mass peak consistent with r0, 
with possible hint of               
gg->f2(1270)->pp

gg->f2(1270)->pp?

ALICE, JHEP 1509, 095 (2015) & J. Adams. Presented at DIS 2016 35


