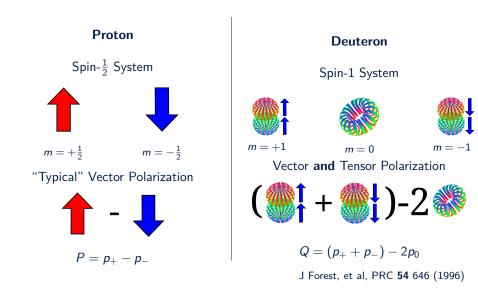
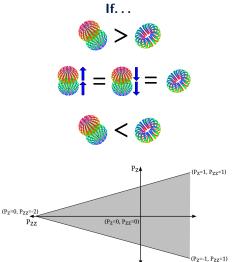
Tensor Polarization on Solid Polarized Targets at UNH

Allison J. Zec (she/her)


Univ. of New Hampshire

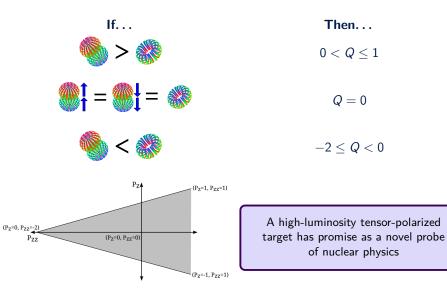
2025-06-10



Tensor Polarization

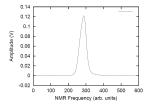
What Deuterons Do That Protons Don't

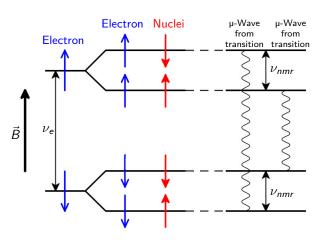
Tensor Polarization Properties



Then... $0 < Q \le 1$ Q = 0

 $-2 \leq Q < 0$


- P ranges from -1 to +1
- Q ranges from -2 to +1
- In deuterons both *P* and *Q* can be nonzero simultaneously


Tensor Polarization Properties

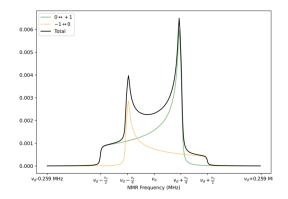
Dynamic Nuclear Polarization (DNP)

- Using µwaves, drive spin transitions of unpaired electrons
- Electrons transfer spin to nuclei
- Nuclear absorption spectrum gives polarimetry info

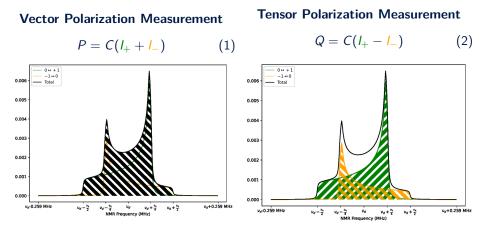
Above: Characteristic lineshape

of the proton

C.D. Keith et al, NIM A 501


(2003)

Allison J. Zec (she/her)


Above: Diagram of the energy level transitions in the DNP process. Adapted from Annu. Rev. Nucl. Part. Sci. 1997. 47:67-109

Deuteron Polarization

- NMR at nuclear spin transition frequency drives further spin transitions
- Proton lineshape from $-1/2 \leftrightarrow 1/2$ transition
- Deuteron lineshape has $-1 \leftrightarrow 0$ and $0 \leftrightarrow 1$ components
 - But NMR only gives the sum of the two
- Signal shape affected by material properties and magnetic field angle

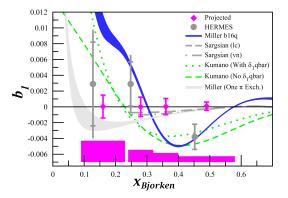
Above: Simulated deuteron lineshape showing the contributions from both the $-1 \rightarrow 0$ transition and the $0 \rightarrow 1$ transition.

where *C* is a dimensionless calibration constant, $I_{+} = n_{+} - n_{0}$, and $I_{-} = n_{0} - n_{-}$ Figures courtesy of E. Long

Allison J. Zec (she/her)

2025-06-10 7 / 24

The Tensor Experiments


b₁ Experiment

- Intended to improve upon HERMES' 2005 data
- Verifications of zero-crossing
 - Implications for Close-Kumano sum rule
- Tensor physics at quark level
- Better understanding of b₁ allows discrimination of different deuteron components by spin (e.g., quarks vs gluons)

Approved by JLab with Aphysics rating!

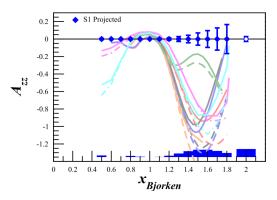
E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer *et al*, JLab C12-13-011 **Spokespersons:** K. Slifer, O.R. Aramayo, J.P. Chen, N. Kalantrians, D. Keller, E. Long, P.

Solvignon

Azz Experiment


- First-of-its-kind quasielastic Azz measurement
- Implications for SRC physics and deuteron wavefunction
- Widest range of x covered by a single measurement
- Measurement of T₂₀ included!

Spokespersons: E. Long, K. Slifer, P. Solvignon, D. Day, D. Keller, D. Higinbotham

> Approved by JLab with Aphysics rating!

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

b₁ Systematics Estimates

Source	Systematic
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Others	2.1%
Total	9.2%

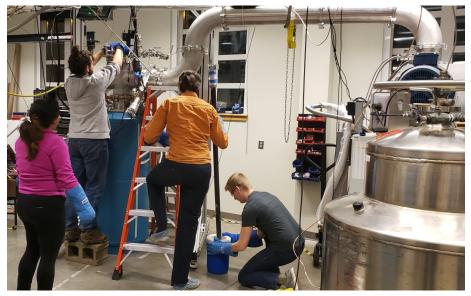
Azz Systematics Estimates

Source	Azz Systematic	T ₂₀ Systematic
Polarimetry	6.0%	6.0%
Dilution Factor	6.0%	2.5%
Packing Fraction	3.0%	3.0%
Others	2.5%	2.5%
Total	9.2%	7.4%

$$A_{zz} = \frac{2}{f \ Q} \left(\frac{\sigma_p}{\sigma_0} - 1 \right)$$

b₁ Systematics Estimates

Source	Systematic
Polarimetry	8.0%
Dilution/Packing Fraction	4.0%
Others	2.1%
Total	9.2%

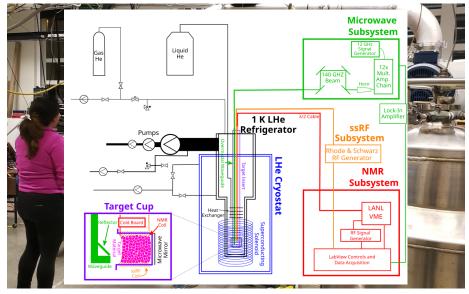

Azz Systematics Estimates

Source	Azz Systematic	T_{20} Systematic
Polarimetry	6.0%	6.0%
Dilution Factor	6.0%	2.5%
Packing Fraction	3.0%	3.0%
Others	2.5%	2.5%
Total	9.2%	7.4%

$$A_{zz} = \frac{2}{f[Q]} \left(\frac{\sigma_p}{\sigma_0} - 1\right)$$

Both experiments require a highly (\geq 30%) tensor-polarized deuterium target with precise measurement of *Q*. How can we achieve that?

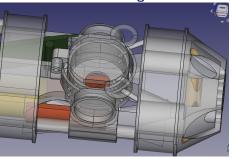
Target Polarization at UNH


The UNH polarized target group is hard at work!

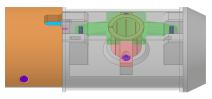
Allison J. Zec (she/her)

The UNH polarized target group is hard at work!

Allison J. Zec (she/her)



The UNH polarized target group is hard at work!


Allison J. Zec (she/her)

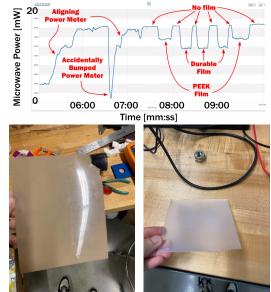
Target Cup Comparison

2022 Design

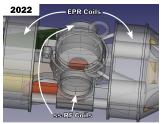
2024 Design

- ID: 20 mm, length: 10 mm
- Target cup fixed in ladder
- NMR coil outside cup
- Loose cup cap (material only in capsules)

- ID: 15 mm, length 16 mm
- Target cup removeable and replaceable
- NMR coil inside cup
- Tight cup cap (can have lose material)


Allison J. Zec (she/her)

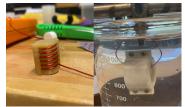
2025-06-10 14 / 24


Microwave Transmission: PEEK vs. Durable

- PCTFE (Kel-F) is best plastic for target ladders, but difficult to acquire right now
- Durable resin or PEEK plastic, which transmited microwaves better?
- 0.5 mm-thick durable film: 35-40% loss at 140 GHz
- 0.5 mm-thick PEEK film: 20-25% loss at 140 GHz
- 2022 design used only durable resin, 2024 design will be first to use PEEK film

Top right: Microwave power test. Bottom left: PEEK film. Bottom right: Durable pseudo-film.

NMR Coil Winding

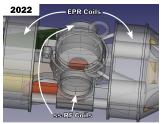

Above: 2022 and 2024 target ladder comparison with ss-RF and EPR coils labeled.

2022 Design:

- All RF coils (NMR, ss-RF, EPR) wound by hand
- NMR, ss-RF, EPR coils all on orthogonal axes
- Helmholtz ss-RF, EPR coils

2024 Design:

- NMR coils wound on 3D-printed mold of PVA.
 - PVA is water-soluble, can dissolve to release uniform wound coil
- NMR and ss-RF coils coaxial, EPR solenoid along field direction
- Solenoidal ss-RF, EPR coils


Left: NMR coil wound around PVA mold. Right: Coil and mold submerged in water, to dissolve the mold away.

Allison J. Zec (she/her)

Tensor Polarization on Solid Polarized Targets at UNH

2025-06-10 16 / 24

NMR Coil Winding

2024 SHE COL

Above: 2022 and 2024 target ladder comparison with ss-RF and EPR coils labeled.

2022 Design:

- \bullet All RF coils (NMR, ss-RF, EPR) wound by hand
- NMR, ss-RF, EPR coils all on orthogonal axes
- Helmholtz ss-RF, EPR coils

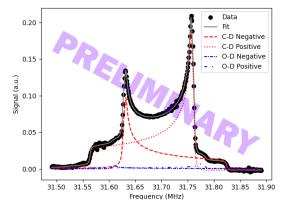
2024 Design:

- NMR coils wound on 3D-printed mold of PVA.
 - PVA is water-soluble, can dissolve to release uniform wound coil
- NMR and ss-RF coils coaxial, EPR solenoid along field direction
- Solenoidal ss-RF, EPR coils

Non-Uniform Coils: J.Mag.Res. 50, 281 (1982)

3D Printed Coil Molds:

J. Mag. Res. 305, 89 (2019)

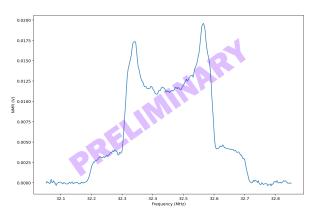

Left: NMR coil wound around PVA mold. Right: Coil and mold submerged in water, to dissolve the mold away.

Allison J. Zec (she/her)

Tensor Polarization Data

September 2024: Highest Polarization

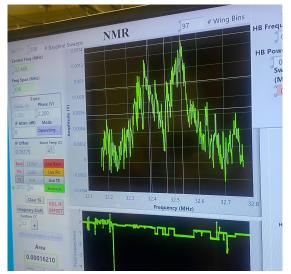
- Polarized with Irrad. d-butanol
- Used the 2022 stick
- Fit with Dulya procedure closely matches data from recent UNH cooldown
 - C. Dulya et al, NIM A 398 (1997) 109-125
- Fit method works very well for UNH data!
- Highest UNH deuteron vector polarization observed!
- *Q* only from equilibrium, no tensor enchancement



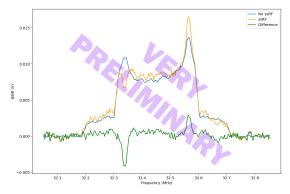
Above: Curve fit of NMR lineshape from recent target cooldown at UNH on irradiated d-butanol. courtesy of M. McClellan.

P: 44.9% Q: 15.8% (no ss-RF applied)

December 2024: First ND₃ Data



Above: ND₃ lineshape after microwave enhancement. Figure courtesy of E. Long

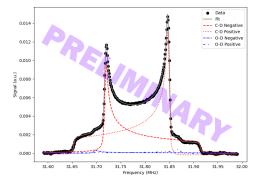

- Taken with warm-irradiated ND₃
 - Material irradiated at NIST by UNH group
- Using 2024 stick
- Lineshapes very noisy...
 - Fits unable to measure *P* or *Q* due to noise
 - P probably < 10%
- First time ever using this batch of material
- Possible low microwave transmission?

December 2024: First ND₃ Data (TE)

- Low signal-to-noise on 2024 stick enables observation of thermal equilibrium (TE) polarization
- \bullet Observed on ND_3 on Dec. 18^{th}
- 2024 stick has a 3x signal magnitude compared to 2022 stick
- Offline analysis made complicated by noise & NMR window size

December 2024: First ND₃ Data (ss-RF)

Above: Comparison between the lineshape before ss-RF (blue), directly following the application of ss-RF (orange), and the difference between the two at each frequency bin (green). Figure courtesy of E. Long

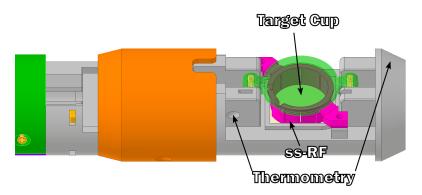

ss-RF (Hole Burning)

RF spin-manipulation at selected frequencies to enhance tensor polarization

- Applied via dedicated coil, coaxial to NMR coil
- On ND₃ burn lasted (by eye) ten minutes before lineshape recovered
- Analysis, being refined to estimated *P* and *Q* on ss-RF signal
- C. Lama developing numerical measure of lineshape recovery time

February 2025: More d-Butanol

- Polarized with Irrad. d-butanol
- Used the 2024 stick
 - Same material as Sept. 2024
- Polarization is lower on 2024 stick than on 2022 stick
- Microwave transmission down waveguide is normal...
- Operating theory: microwave optical effects induced by the smaller radius of the 2024 stick target cup (compared to 2022 cup)



Above: Curve fit of NMR lineshape from Feb. 2025 cooldown at UNH on irradiated d-butanol. Courtesy of M. McClellan.

This Data (Preliminary)

P: 25.5% Q: 4.9% (no ss-RF applied)

2025 Target Stick

Above: CAD design of the 2025 target ladder (codename: Diana)

- "Best of both worlds" design
- 2022 stick cup size

- 2024 stick ss-RF capability
- Will be deploying very soon!

Plus quality of life design improvements...

Allison J. Zec (she/her)

Summary

Professors

Nathaly Santiestehan

Allison Zec

David Ruth

Eli Phippard

Thank you to the UNH PolTarg Group and our collaborators at UVA!

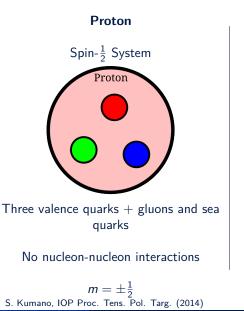
Graduate Students

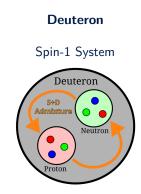
Michael McClellan Anchit Arora Chhetra Lama

Faroog

Olaiva Olokunbovo

- Building up towards b_1/A_{zz} ERR
- September cooldown with 2022 stick > 40% P
- December cooldown: first ND₃ data
- February cooldown: further data on d-butanol
- This summer: new target stick commissioning
- Coming attractions:
 - Lineshape fitting with ss-RF applied
 - ss-RF burn decay time analysis


2025-06-10 24 / 24


Zoe Wolters

Muhammad

Backup Slides

Protons & Deuterons

Proton-Neutron bound state

Simplest nuclear system: nucleon interaction effects

$$m = \pm 1, 0$$

Allison J. Zec (she/her)

Above: UNH LHe refrigerator D. M. Aliaga et al. NIM 976 (2020) 164277

Refrigerator and Magnet

1 K LHe evaporative su fridge, with 2.4 W cooling power

5 T Nb-Sn superconducting solenoidal magnet

Above: UNH LHe refrigerator D. M. Aliaga et al. NIM 976 (2020) 164277

Refrigerator and Magnet

1 K LHe evaporative su fridge, with 2.4 W cooling power

5 T Nb-Sn superconducting solenoidal magnet

Microwaves

Solid-state microwaves producing >100 mW power between 136 and 144 GHz. Source is movable by remote motor control. System designed by Bridge12 inc. Below: Microwave source and mount.

Target Insert

Designed, printed and assembled in-house. Also houses overmodal microwave waveguide. Right: 3D-printed target insert ladder with coils wound and no target material.

Microwaves

Solid-state microwaves producing >100 mW power between 136 and 144 GHz. Source is movable by remote motor control. System designed by Bridge12 inc. Below: Microwave source and mount.

RF Wavegui

material

(empty)

Curved

reflective lid

Hole-

coil

thermometry

NM

coil

EPR coil

Target Insert

Designed, printed and assembled in-house. Also houses overmodal microwave waveguide. Right: 3D-printed target insert ladder with coils wound and no target material.

Below left: frozen unirradiated NH₃. Below right: frozen doped butanol.

Target Material

Material, both ammonia and doped alcohols, frozen and stored on-site. ALSO: now have irradiated deuterated ammonia!

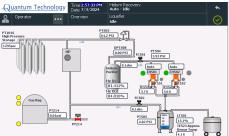
Left: VME crate for NMR control system and analyzer.

NMR System

NMR system with LANL design sweeps at deuteron transition frequency $(\simeq 30 \text{ MHz}).$

P. McGaughey, et al, NIM A 995 (2021) 165045

Below left: frozen unirradiated NH₃. Below right: frozen doped butanol.

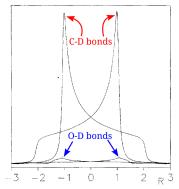


Target Material

Material, both ammonia and doped alcohols, frozen and stored on-site. ALSO: now have irradiated deuterated ammonia!

NEW Helium Reliquefaction System

Left: group photo of the reliquefier installation team. Above: Reliquifier system software overview. **Right:** Chhetra adds LN2 to our helium purifier dewar.



Allison J. Zec (she/her)

BACKUP: Tensor Polarization Analysis

ND₃ and Other Target Materials

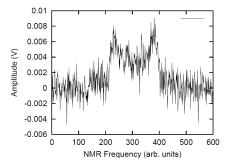
C. Dulya, et al, NIM A 398 (1997)

- Both *b*₁ and *A*_{zz} experiments call for solid ND₃ targets
- Polarization also done with frozen chemically-doped deuterated alcohols
- Lineshape affected by quadrupole splitting of molecule
 - $\bullet~$ Different for ND_3 vs butanol

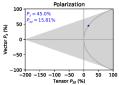
 $\mathit{Left:}$ C-D, O-D bond contribution to the deuteron NMR lineshape in d-butanol

Material	Dopant & method	Polarizable nucleons % by weight	
ND ₃	ND ₂	\sim 30%	
d-ammonia	Irradiation	/~50/8	
C ₄ D ₉ OD	TEMPO	23.7%	
d-butanol	Chemical	23.1%	

D. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci 47 67-109 (1997)


Thermal Equilibrium & Enhancement

Deuteron thermal equilibrium (TE) polarization before microwave irradiation:


$$P(1) = \frac{4 \tanh\left(\frac{g_i \mu_i B}{2k_B T}\right)}{3 + \tanh^2\left(\frac{g_i \mu_i B}{2k_B T}\right)} \qquad (3$$

Only 0.1% polarization at 5 T and 1 K.

TE signal can be used for calibration if detected. Signal is then enhanced with microwaves.

Above: Deuteron TE signal from CLAS target. From C. Keith *et al*, NIM A **501** (2003). *Right*: Polarization curve during enhancement.

NMR Curve Fitting

- Fit NMR lineshape with procedure from C. Dulya *et al*, NIM A **398** (1997) 109-125
- Includes effects from molecular bond quadrupole terms
- Can naively use peak height ratio r to estimate polarization

$$P_{z} = \frac{r^{2} - 1}{r + r^{2} + 1}$$

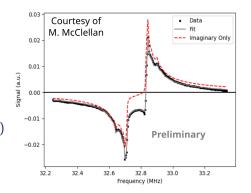
$$P_{zz} = \frac{r^{2} - 2r + 1}{r^{2} + r + 1}$$
(4)

• Then compare *ratio* and *area* methods for *P*_{zz} measurement consistency

Right: Parts of the curve fitting method suggested by C. Dulya *et al.*

$$R, A, \eta, \phi \xrightarrow{\text{compacting}} \text{variables}$$

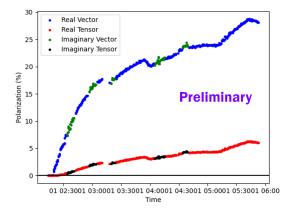
$$\begin{split} \rho^2 &= \sqrt{A^2 + [1 - \epsilon R - \eta cos(2\phi)]^2} & R = \frac{\omega - \omega_d}{3\omega_q} \\ cos(\alpha) &= \frac{1 - \epsilon R - \eta cos(2\phi)}{\rho^2} & -3 \leq R \leq 3 \end{split}$$


functional form of signal
$$\begin{split} f_{\epsilon}(R,A,\eta,\phi) &= \frac{1}{2\pi\rho} \{ 2cos(\frac{\alpha}{2}) \left[\arctan\left(\frac{Y^2 - \rho^2}{2Y\rho sin(\frac{\alpha}{2})}\right) + \frac{\pi}{2} \right] \\ & \epsilon = \pm 1 \\ & + sin(\frac{\alpha}{2}) ln\left(\frac{Y^2 + \rho^2 + 2Y\rho cos(\frac{\alpha}{2})}{Y^2 + \rho^2 - 2Y\rho cos(\frac{\alpha}{2})} \right) \} \end{split}$$
phi average 🞝 $F_{\epsilon} \approx \frac{1}{J+1} \sum_{i=0}^{J} \frac{\sqrt{3}f_{\epsilon}(R, A, \eta, \phi_j)}{\sqrt{3 - \eta cos(2\phi_i)}}$ positive & negative spin flips $\chi''(r,R) \propto \frac{1}{\omega_q} \left\{ \left[\frac{r^2 - r^{1-3\theta R}}{r^{1-\theta R}} \right] F_+(R) + \left[\frac{r^{1+3\theta R} - 1}{r^{1+\theta R}} \right] F_-(R) \right\}$ $\theta = \omega_a / \omega_d$

Real & Imaginary Fits

- Can now manually set NMR phase angle ϕ during cooldowns
- Fit using a rotation of the absorptive (χ") and dispersive (χ') around phase angle:

 $\begin{aligned} \text{Real} &= \chi'' \cos \phi - \chi' \sin \phi \\ \text{Imag} &= \chi'' \sin \phi + \chi' \cos \phi \end{aligned} \tag{5}$


- Can fit a simultaneous mixture of real and imaginary
- First fits with the new method match data well, look very promising!

Above: Fit of recent cooldown data using real and imaginary parts. Fit is compared with an "imaginary only" signal and then fitted for a phase mistune.

Real & Imaginary NMR Signals

- Switch from real to imaginary lineshape by tuning phase
- Use fitting for real and imaginary lineshapes differently
- Demonstrated resilience to having phase not tuned perfectly
- Real and imaginary measurements match each other well!

Above: Data from recent UNH cooldown with both real and imaginary line data for both vector and tensor polarization. Figure courtesy of M. McClellan.