Scintillating Bubble Chambers for Rare Event Searches

Ben Broerman for the SBC collaboration

CIPANP 2025

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

sub-keV nuclear recoils

- Difficult kinematics of GeV-scale
 DM-nucleon scattering require
 low thresholds (≤ 1 keV)
 - Future success here needs background discrimination and scalability
- Similar challenge measuring CEvNS from MeV-scale v's (see G. Putnam's talk, Wednesday)

Bubble chambers for DM searches

- Superheated liquids have efficient nucleation at low n.r. thresholds
- Highly β/γ insensitive —

n

2.11

3

a

n.r.

4

2

-1

60

40

0

A liquid-noble bubble chamber

Adds in:

- Energy reconstruction
- Higher β/γ rejection than Freons
 - Lower threshold w/o e.r.
 backgrounds increases
 sensitivity to lower DM masses

Why liquid-nobles work

Freon-based target fluid

Liquid-noble target fluid

Main point: Liquid nobles remain β/γ blind in GeV-scale ROI \rightarrow sensitive to only nuclear recoils

Prototype LXe bubble chamber

-50

0

50

100

Time from PMT trigger [ns]

150

200

6

SBC's 10 kg detector design

Building two functionally-identical detectors:

SBC-LAr10 @ Fermilab (engineering, calibration, future CEvNS program)

SBC-SNOLAB @ SNOLAB (low background dark matter search)

SBC's 10 kg detector design

	ports sure el	Outer quartz vessel	Design Goals	
Viewports			Target Volume	10 L (10 kg LAr @ 130 K)
Pressure			Nucleation Threshold	100 eV (30 psi , 130 K)
vessel			Thermodynamic Regulation	±0.5 K, ±0.1 bar, (± 5 eV Seitz threshold)
SiPMs		HDPE insulation	Scintillation Detection	~2% collection, 1 photon/ 5 keV n.r.
	ezo	Inner quartz vessel	Bubble Imaging	100 fps, mm resolution
Piezo —			Acoustic Reconstruction	Time-of-nucleation to $\pm 25 \mu s$

SNOLAB internals & process controls

Internals components purchased/built and tested in parallel with Fermilab chamber

Fermilab, SNOLAB, and test vessels

Queen's test setup

PLC under construction at Queen's (Carter Garrah, Queen's)

Component arrival at SNOLAB

Main detector components are arriving on surface at SNOLAB

Starting assembly later this summer

Pressure vessel

Vacuum jacket

Simulation and shield design

Full assay campaign and Geant4 simulation of internal and external backgrounds (led by Gary Sweeney, Queen's)

- Water shield for rock-wall neutrons (800x reduction in fast neutrons)
- Gamma shield (200x reduction in Thomson scattering $E_{\gamma} \gtrsim 1.4 MeV$)

SiPM construction

 Simulations indicate high background rate from Hamamatsu VUV4 SiPMs

- Switch to FBK VUV HD3 (same as nEXO)

- Wire bonding in Atlas cleanroom at TRIUMF

Physics potential

- ROI: 0.1 keV 10 keV n.r.
 - just bubble, no scintillation
- SNOLAB chamber, 10 kg-year exposure can reach 10⁻⁴³ cm² @ 1 GeV/c²
- Tonne-year can reach boundary of the Ar v-fog

Target fluid flexibility (Xe, Ar, N₂, etc.)

Conclusion

- SBC has great potential to probe GeV-scale dark matter
- Exciting time for SBC in 2025
 - Operation @ FNAL
 - SNOLAB TDR completed, construction late summer

Snowmass: arXiv: 2207.12400. Universe 9 (2023) 8, 346. Phys.Rev.D 111 (2025) 3, 032002. JINST 19 (2024) 08, T08003

