Recent Heavy Flavor Results from ATLAS

Andrew Gentry, University of New Mexico

On behalf of the ATLAS Collaboration

CIPANP 2025 June 9, 2025

Presenting 3 recent results in heavy flavor physics from ATLAS:

Differential cross-section measurements of D^\pm and D_s^\pm meson production in p-p collisions at $\sqrt{s}=13~{\rm TeV^1}$

Precision measurement of the B^0 meson lifetime using $B^0 \to J/\psi K^{*0} \mbox{ decays}^2$

Measurement of the production cross section of J/ψ and $\psi(2S)^3$

Andrew Gentry

イロト イポト イヨト イヨト

¹arXiv:2412.15742 (submitted to JHEP)

²arXiv:2411.09962 (accepted by EPJC)

³Eur. Phys. J. C 84 (2024) 169 arXiv:2309.17177

Introduction

- Cross section and lifetime measurements provide crucial tests of QCD, improve constraints to improve calculation techniques
- Heavy flavor processes are often backgrounds in other experimental searches at the LHC, and improved constraints can aid in, e.g. direct searches for new physics
- Heavy flavor measurements like *B* lifetime can provide constraints to BSM models
- ATLAS is not designed specifically for flavor physics, but is well-equipped especially to measure final states with muons, with lower-p_T dimuons can be triggered utilizing dimuon inv. mass

イロト イヨト イヨト イ

D^{\pm}/D_s^{\pm} Cross Section - Overview

- Charm hadron production is critical input for improving QCD calculations where large theoretical uncertainties exist and for searches for new physics phenomena
- Previous measurements made by ATLAS, CMS, LHCb, and ALICE
 - $\bullet~$ This measurement marks the first differential measurement in the D_s^{\pm} channel
- New measurement, using $D^{\pm}/D_s^{\pm} \rightarrow \phi(\mu^+\mu^-)\pi^{\pm}$ channel, uses $\int \mathcal{L} dt = 137 \text{ fb}^{-1}$ from 2016-18 data
- MC simulations use Pythia 8.212 with LO $2\rightarrow 2$ QCD processes, parton showers, and NNPDF2.3LO PDFs, ATLAS A14 tune used for event generation
- Measurements are compared to both general-mass variable-flavor-number scheme (GM-VFNS) and fixed order next-to-leading logarithm (FONLL) predictions

D^{\pm}/D_s^{\pm} Measurement Strategy

Measurement proceeds in bins of p_T and η

$$\frac{d\sigma}{dp_{\rm T}(\eta)}\Big|_i = \frac{S^i}{\int \mathcal{L}dt \times C^i \times \mathcal{B}(D^{\pm}/D_s^{\pm} \to (\phi(\mu^+\mu^-)\pi^{\pm}) \times \Delta^i p_{\rm T}(\eta)}$$
(1)

Quantity	Description / Value
S^i	Signal yields, extracted from mass fits
$\int \mathcal{L} dt$	137 fb^{-1}
C^i	Reconstruction/selection efficiency, found using MC simulated events, with fraction from $b\bar{b}$ vs. $c\bar{c}$ determined by lifetime fit
$\mathcal{B}(D^{\pm}/D_s^{\pm} \to (\phi(\mu^+\mu^-)\pi^{\pm}))$	$\begin{array}{l} \underset{\mathcal{B}(D_s^{\pm} \to \phi(K^+K^-)\pi^{\pm})}{\mathcal{B}(\phi \to K^+K^-)} \times \mathcal{B}(\phi \to \mu^+\mu^-) \end{array}$
$\Delta^i p_{ m T}/\eta$	Bin width
Andrew Gentry	University of New Mexico CIPANP 2025, June 9, 2025 5/31

D^{\pm}/D_s^{\pm} Mass Fit

- 2 Voigtian distributions with Gaussian constraint on $m_{D^\pm}-m_{D^\pm_s}+$ quadratic exponential for background
- \bullet Fit for each bin in $\eta, p_{\rm T},$ here is one example

< D > < P > < E > < E</p>

D^{\pm}/D_s^{\pm} Lifetime Fit

- Pseudo-proper lifetime $au = rac{m_{\mu+\mu-\pi}L_{xy}}{p_{\mathrm{T}}}$
- \bullet Templates consisting of exponential(s) convolved with Gaussian and error function fit to $b\bar{b}$ and $c\bar{c}$ MC
- Relative fraction is then fit with single-parameter template fit to data in each bin

D^{\pm}/D_s^{\pm} Results

- Good agreement for both models at low $p_{\rm T}$ for D^{\pm} , **GM-VFNS** is higher at high $p_{\rm T}$
- Only GM-VFNS available for D_{s}^{\pm} , predicts higher value throughout, increasing with $p_{\rm T}$

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Overview

- Lifetime measurement is a fundamental property that can test our understanding of the weak interaction e.g. the difference between B_d/B_s masses due to Pauli interference and weak annihilation
- Theoretical predictions made using QCD sum rules in the Heavy Quark Effective Theory (HQET) or Lattice QCD framework
- \bullet After τ is extracted, Γ_d can be calculated w/ parameters from HFLAV
- Γ_d/Γ_s is observable with best theoretical uncertainty, reported using previous measurement of Γ_s by ATLAS

(日) (四) (日) (日) (日)

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Reconstruction

- Pseudo-proper decay time $t = \frac{L_{xy}m_B}{p_T}$
- $\bullet\,$ Fit vertex with 2 oppositely charged muons, then $K^{*0} \to K^+\pi^-$ fit 2 tracks
- \bullet Perform a cascade fit to a common vertex, with J/ψ mass constrained, $\chi^2/{\rm ndof}<3$
- PV is refitted removing tracks from B^0 reconstruction, PV with smallest 3D impact parameter is used
- Simultaneous fit to mass and lifetime performed with:

 $\ln L = \Sigma_i^N w(t_i) \ln[f_{\rm sig} \mathcal{M}_{\rm sig}(m_i) \mathcal{T}_{\rm sig}(t_i, \sigma_i, p_{\rm T_i}) + (1 - f_{\rm sig}) \mathcal{M}_{\rm bkg}(m_i) \mathcal{T}_{\rm bkg}(t_i, \sigma_i, p_{\rm T_i})]$ (2)

where $w(t_i)$ are decay time dependent weights based on detector and selection efficiencies f is the fraction of signal events, determined in the fit, and \mathcal{M}, \mathcal{T} are the mass and decay time PDF's

イロト イポト イヨト イヨト

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Mass Fit

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Decay Time Fit

- Consists of signal term + bkg term, both convolution with a sum of 3 Gaussians modeling the proper decay time resolution
- Signal PDF is exponential
- Background is prompt contribution, which is just resolution, plus sum of 3 exponentials, for combinatorial contribution

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Systematics

- Extensive systematic studies were performed, see paper for more details
- Largest contribution comes from mass-time correlation, $1.9\sigma_{\rm stat}$
- Evaluated by dividing mass sidebands into 6 bins, then fitting for background PDF's only
- This showed linear dependence on mass. New fit is performed with with linear dependence of f_{prompt} on mass is reflected in fit, result is a fit that is different by $1.9\sigma_{\rm stat}$

Source of uncertainty	Systematic uncertainty [ps]
ID alignment	0.00108
Choice of mass window	0.00104
Time efficiency	0.00130
Best-candidate selection	0.00041
Mass fit model	0.00152
Mass-time correlation	0.00229
Proper decay time fit model	0.00010
Conditional probability model	0.00070
Fit model test with pseudo-experiments	0.00002
Total	0.0035

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Results

$$\tau_B^0 = 1.5053 \pm 0.0012(\text{stat.}) \pm 0.0035(\text{syst.})\text{ps}$$

$$\Gamma_d = 0.6639 \pm 0.0005(\text{stat.}) \pm 0.0016(\text{syst.}) \pm 0.0038(\text{ext.})\text{ps}^{-1}$$

$$\frac{\Gamma_d}{\Gamma_s} = 0.9905 \pm 0.0022(\text{stat.}) \pm 0.0036(\text{syst.}) \pm 0.0057(\text{ext.})$$
(3)

- $\bullet\,$ External uncertainty comes from HFLAV uncertainties from parameters used in the Γ calculations
- \bullet Previous ATLAS measurement of Γ_s was used
- This measurement is the most precise to date, compatible with theory and previous measurements

Model	Γ_d/Γ_s	
HQE	1.003 ± 0.006	
Lattice QCD	1.00 ± 0.02	~
	<u> </u>	(¥

Andrew Gentry

University of New Mexico

CIPANP 2025, June 9, 2025

J/ψ & $\psi(2S)$ Differential Cross Section - Overview

- Models for charmonimum production are well constrained by previous measurements of cross section and polarization
- New constraints to help improve models can be added by measuring differential cross section at higher p_T
- New result measures the double-differential cross section for $J/\psi(\psi(2S))$ in a much wider range of transverse momentum, between 8-360 (8-140) GeV
- New $p_{\rm T}$ regime reached using single muon high- $p_{\rm T}$ trigger

J/ψ & $\psi(2S)$ Differential Cross Section - Overview

- \bullet Overall strategy is similar to D meson cross section, with necessary ingredients of yield, efficiencies, and integrated luminosity
- There are 2 regimes in this measurement, distinguished by different triggers:
 - $p_{
 m T}(\psi) < 60$ GeV uses dimuon $p_{
 m T} >$ 4 GeV triggers, 2.6 ${
 m fb}^{-1}$ of data
 - $p_{\rm T}(\psi)>60~{\rm GeV}$ uses single muon $p_{\rm T}>$ 52.5 GeV trigger, 140 ${\rm fb}^{-1}$ of data
- \bullet Charmonium states reconstructed from $\psi \to \mu^+ \mu^-$ decays
- Fit model consists of 7 terms, with each consisting of a mass PDF times (decay time PDF convolution with resolution function):
 - \bullet 4 signal terms, for prompt/non-prompt, $J/\psi/\psi(2S)$
 - 3 background terms describing prompt backgronds and non-prompt same/opposite side backgrounds

イロト イポト イヨト イヨト

J/ψ & $\psi(2S)$ Differential Cross Section - Fits

• Some example fits out of the 34 bins of $p_{\mathrm{T}} imes 3$ bins of |y|

J/ψ & $\psi(2S)$ Differential Cross Section - Prompt Results

00 (s = 13 TeV

NI O NROCD

NRQCD with ky-factorisation

 $0 \le |y| < 0.75$

Prompt J/w

30ny / E

10

- Comparisons made to theory for prompt production w/ 3 different models
- Generally good agreement, at low $p_{\rm T}$ worse at high $p_{\rm T}$ for J/ψ
- Some underestimation at low $p_{\rm T}$ for $\psi(2S)$

 $\int Ldt = \frac{2.6 \text{ fb}^{-1}}{140 \text{ fb}^{-1}} \frac{P_T < 60 \text{ GeV}}{P_T \ge 60 \text{ GeV}}$

 10^{2}

р.,(µµ) [GeV]

ICEM

10

J/ψ & $\psi(2S)$ Differential Cross Section - Non-prompt Results

Data

l/ Allo

- Similar results for non-prompt cross section
- Larger divergence at high-p_T for J/ψ

ATLAS

pp √s = 13 TeV

 $\int Ldt = \begin{array}{cc} 2.6 \text{ fb}^{-1} & p_{T} < 60 \text{ GeV} \\ 140 \text{ fb}^{-1} & p_{T} \ge 60 \text{ GeV} \end{array}$ 0 ≤ |y| < 0.75 Non-prompt w(2S)

Conclusions

 D^{\pm}/D_s^{\pm} Differential Cross Section Measurement

First measurement for D_s^{\pm} and overall improvement from previous ATLAS result

 B^0 Lifetime with $B^0 \to J/\psi K^{*0}$

Most precise B^0 lifetime measurement so far, in agreement with SM predictions and previous measurements

 J/ψ & $\psi(2S)$ Differential Cross Section

Measurements made for wider p_{T} range provide new inputs for theoretical models

< □ > < 同 > < 三 > < 三 >

Backup slides

Andrew Gentry

University of New Mexico

CIPANP 2025, June 9, 2025 21 / 31

2

< □ > < □ > < □ > < □ > < □ >

D^{\pm}/D_s^{\pm} Selections

- For possible combination of $\mu^+\mu^-$ track (hypothesized pion), remove 3 tracks, refit PV, then attempt D meson SV fit
- Various selections are made to improve the signal-to-noise ratio
- $\vec{L_t}$ is the vector connecting SV and PV in the transverse plane

•	Then	a_{xy}^0	$= L_{2}$	$\cos(\cos(2\pi t))$	$(heta_{xy});$	L_{xy}	= i	L_T	$\sin(\theta$	$\theta_{xy})$	
---	------	------------	-----------	----------------------	-----------------	----------	-------	-------	---------------	----------------	--

Selection				
Muon objects	Two muons satisfying the Loose working point			
Track object	One track satisfying the Loose working point			
Transverse momentum	$p_{\rm T}^{\mu} > 6 {\rm GeV}, p_{\rm T}^{\pi} > 1 {\rm GeV}$			
Total charge	$ Q_{\text{triplet}} = 1$			
Opposite charge muons	$Q_{\mu_1} \times Q_{\mu_2} = -1$			
Di-muon invariant mass	$ m_{\mu\mu} - m_{\phi} < \delta m(\eta)$			
L_{xy} significance	$\operatorname{Sig}(L_{xy}) > 3$			
a_{xy}^0 significance	$ Sig(a_{xy}^{0}) < 4$			
Vertex p-value	$\log(p_0^{\text{vertex}}) > -0.8$			
Highest vertex p-value	The vertex with $Max(p_0^{vertex})$ in the event			

(日) (四) (日) (日) (日)

D^{\pm}/D_s^{\pm} Systematic Uncertainty

- Several systematics were considered, summarized in the plot
- Most important uncertainty for most of phase space in D^{\pm} measurement is background modeling (assessed by refitting with simple exponential function)
- \bullet Most important in D_s^\pm is BR uncertainty

D^{\pm}/D_s^{\pm} Inclusive Cross Section

		D^{\pm} inclusive	e fiducial cross-	-section [nb]
		ATLAS	GM-VFNS	FONLL
		$\sigma\pm\delta_{\rm total}$	$\sigma \pm \delta_{\text{theory}}$	$\sigma \pm \delta_{\text{theory}}$
	$\sqrt{s} = 13 \text{ TeV}$	1690 ± 270	2200^{+310}_{-290}	1480^{+230}_{-190}
• Fiducial cross section	$\sqrt{s} = 7 \text{ TeV}$	888 ± 97	980^{+120}_{-150}	620^{+100}_{-80}
for $ \eta < 2.1, 20 < p_T < 100 GeV$	Ratio (13 TeV/7 TeV)	1.9 ± 0.4	2.24 ± 0.04	2.38 ± 0.01
 Data are mostly 		D_s^{\pm} inclusive fiducial cross-section [nb]		
consistent with models		ATLAS	GM-VFNS	
within uncertainty		$\sigma\pm\delta_{\rm total}$	$\sigma \pm \delta_{\rm theory}$	
	$\sqrt{s} = 13 \text{ TeV}$	810 ± 100	950^{+140}_{-130}	
	$\sqrt{s} = 7 \text{ TeV}$	510 ± 100	470^{+56}_{-69}	
	Ratio (13 TeV/7 TeV)	1.6 ± 0.4	2.02 ± 0.05	
		• • • •		

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Overview

- Lifetime measurement is a fundamental property that can test our understanding of the weak interaction e.g. the difference between B_d/B_s masses due to Pauli interference and weak annihilation, and is an indirect probe of new physics
- Theoretical predictions made using QCD sum rules in the Heavy Quark Effective Theory (HQET) or Lattice QCD framework
- \bullet Ratio of B^0 to B^0_s is observable with best theoretical uncertainty
- We measure:

$$\tau_{B^0} = \frac{1}{\Gamma_d} \cdot \frac{1}{1 - y^2} \left(\frac{1 + 2Ay + y^2}{1 + Ay} \right)$$
(4)

where:

$$A = \frac{R_H^f - R_L^f}{R_H^f + R_L^f} \tag{5}$$

$$\langle \Gamma(B^0(t)) \rangle = \Gamma(B^0(t)) + \Gamma(\bar{B}^0(t))$$

$$= R_H^f \exp(-\Gamma_H t) + R_L^f \exp(-\Gamma_L t)$$
(6)

B^0 Lifetime with $B^0 \rightarrow J/\psi K^{*0}$ Reconstruction

• Pseudo-proper decay time
$$t = \frac{L_{xy}m_B}{p_T}$$

- 2 oppositely charged muons, Tight working point ID, fit req $\chi^2/{\rm ndof}<10$ + loose mass selection, which retains 99.7% of candidates
- $K^{*0} \to K^+ \pi^-$ fit 2 tracks with both $K^*/\bar{K^*}$ hypotheses (keep the one closer to K^* mass), $p_T[K(\pi)] > 1(0.5)$ GeV
- $p_{\rm T}(K^{*0}) > 3.5$ GeV, and $846~{
 m MeV} < m < 946~{
 m MeV}$
- \bullet We perform a cascade fit to a common vertex, with J/ψ mass constrained, $\chi^2/{\rm ndof}<3$
- PV is refitted removing tracks from B^0 reconstruction, PV with smallest 3D impact parameter is used
- Simultaneous fit to mass and lifetime performed with:

$$\ln L = \Sigma_i^N w(t_i) \ln[f_{\rm sig} \mathcal{M}_{\rm sig}(m_i) \mathcal{T}_{\rm sig}(t_i, \sigma_i, p_{\rm T_i}) + (1 - f_{\rm sig}) \mathcal{M}_{\rm bkg}(m_i) \mathcal{T}_{\rm bkg}(t_i, \sigma_i, p_{\rm T_i})]$$
(7)

where $w(t_i)$ are decay time dependent weights based on detector and selection efficiencies based on MC, f is the fraction of signal events, determined in the fit, and \mathcal{M}, \mathcal{T} are the mass and decay time PDE's $\Rightarrow \circ \circ$

Andrew Gentry

University of New Mexico

J/ψ & $\psi(2S)$ Differential Cross Section - Overview

- \bullet Charmonium states reconstructed from $\psi \to \mu^+ \mu^-$ decays
- Fit model consists of 7 terms, with each consisting of a mass PDF times (decay time PDF convolution with resolution function):
 - 4 signal terms, for prompt/non-prompt, $J/\psi/\psi(2S)$
 - 3 background terms describing prompt backgrounds (e.g. Drell-Yan), non-prompt same-side backgrounds (like *b*-hadron decay) and non-prompt double sided backgrounds (muons originate e.g. from 2 different *b*-hadrons)
 - Resolution function is a sum of 3 Gaussians
 - Fits summarized in table, where G, CB, δ , E, and P terms correspond to Gaussian, Crystal-Ball, Dirac- δ Exponential and 2nd-order polynomial functions, respectively

i	Type	P/NP	$f_i(m)$	$h_i(\tau)$
1	J/ψ	Р	$\omega_0 G_1(m) + (1 - \omega_0)[\omega_1 CB(m) + (1 - \omega_1)G_2(m)]$	$\delta(\tau)$
2	J/ψ	NP	$\omega_0 G_1(m) + (1 - \omega_0)[\omega_1 CB(m) + (1 - \omega_1)G_2(m)]$	$\omega_2 E_1(\tau) + (1-\omega_2) E_1(b\tau)$
3	$\psi(2S)$	Р	$\omega_0G_1(\beta m) + (1-\omega_0)[\omega_1CB(\beta m) + (1-\omega_1)G_2(\beta m)]$	$\delta(\tau)$
4	$\psi(2S)$	NP	$\omega_0G_1(\beta m) + (1-\omega_0)[\omega_1CB(\beta m) + (1-\omega_1)G_2(\beta m)]$	$E_2(\tau)$
5	Bkg	Р	Р	$\delta(\tau)$
6	Bkg	NP	$E_3(m)$	$E_4(\tau)$
7	Bkg	NP	$E_5(m)$	$E_{6}(\tau)$

< ロ > < 同 > < 回 > < 回 >

J/ψ & $\psi(2S)$ Differential Cross Section - Results

- [fb/GeV Ifb/GeV ATI 45 ATLAS 2.6 fb⁻¹ p_T < 60 GeV 140 fb⁻¹ p_T ≥ 60 GeV p_T < 60 GeV p_T ≥ 60 GeV $\int Ldt =$ 10 ≷ ⁵¹dp/s₂p(_11,10 10)^-dp/9_g0(_πt_π€ pp 🕼 = 13 TeV pp (s = 13 TeV Prompt J/w Prompt w(2S) 01 (SC)-≥ 10 = 10 = 10 10 10 10² 10² 10 10 р_(µµ) [GeV] р_(µµ) [GeV] [√99 10⁹ 10⁹ 10⁹ [fb/GeV LATLAS ATLAS $\int Ldt = \frac{2.6 \text{ fb}^{-1}}{140 \text{ fb}^{-1}} \frac{\text{p}_{T} < 60 \text{ GeV}}{\text{p}_{-} \ge 60 \text{ GeV}}$ 2.6 fb⁻¹ p_T < 60 GeV 140 fb⁻¹ p₂ ≥ 60 GeV Ldt = ₹ ¹⁰ dp/g_p(nt,nt)^dp/9_0(πţ,π{ 10 pp 🕼 = 13 TeV pp (s = 13 TeV Non-prompt J/w Non-prompt y(2S) B(w(2S)-B(w(2S)-≥ 10 5 10 10 10 $10^{\circ} 0.00 \le |v| < 0.79$ 10 10² 10² 10 10 р_(µµ) [GeV] р_(µµ) [GeV]
- Measurement results for prompt/non-prompt $J/\psi/\psi(2S)$

イロト イヨト イヨト イヨ

J/ψ & $\psi(2S)$ Differential Cross Section - Results

- Comparisons made to theory for prompt production
- NRQCD: Predictions and largely overlap, some overestimate at hight $p_{\rm T}$
- k_T-factorization model: aims to improve by taking into account transverse degrees of freedom of the initial gluons in the colliding protons. Underestimates data at low-p_T
- Improved Color Evaporation Model (ICEM) assigns fixed fraction of the $c\bar{c}$ production cross section below the open charm threshold to individual charmonium states. Predicts harder $p_{\rm T}$ spectra and underestimates cross section for $\psi(2S)$

J/ψ & $\psi(2S)$ Differential Cross Section - Results

- Models based on PQCD for production of bb pair, their hadronization, and decay to charmonium
- FONLL agrees at low $p_{\rm T}$ and diverges at hight $p_{\rm T}$
- GM-VFNS is similar
- NRQCD with k_T factorization reproduce measurement well, but are limited in p_T range by the available gluon PDF

< ロ > < 同 > < 回 > < 回 >

Other Results Since CIPANP 2022

- \bullet Measurement of $B^0_s \to \mu^+ \mu^-$ Effective Lifetime^4
- $\tau = 0.99^{+0.42}_{-0.07}$ (stat.) ± 0.17 (syst.)

⁴ JHEP 09 (2023) 199 arXiv:2308.01171 ⁵ Phys. Rev. Lett. 131 (2023) 151902 arXiv:2304.08962

- Dicharmonium Spectroscopy with di- J/ψ and $J/\psi+\psi(2S)^5$
- Observed peak consistent with X(6900) resonance observed by LHCb, plus broader excess at lower mass

イロト 不得 トイヨト イヨト