

Recent highlights in BSM searches from the LHC

15th Conference on the Intersections of Particle and Nuclear Physics 12 June 2025

Shivani Lomte (UW-Madison) On behalf of the ATLAS and CMS Collaborations

ATLAS & CMS experiments at the LHC

Run-2 (2015–2018):

~140 fb⁻¹ recorded per experiment at 13 TeV

Run-3 (2022–2025):

Now running at 13.6 TeV, aiming for >250 fb⁻¹ Nearly doubling the Run-2 dataset

Combined total by end of Run-3:

~450 fb⁻¹ per experiment (Run 1+2+3)

Expands reach for rare processes, heavier particles, and sensitivity to new physics signatures

1 fb⁻¹ corresponds to around 100 million million (potential) collisions

Growing total luminosity

Complementary experiments, designed to independently explore wide range of physics phenomena

Together, provide cross-verification of results \rightarrow core strength of LHC physics

Reconstructed signatures

Layered sub-detector systems \rightarrow allow precise particle identification and energy/momentum measurement

Standard objects:

- *Electron*: inner tracks + EM calorimeter energy
- *Photon*: EM clusters without associated tracks
- *Muon*: tracks in tracker + muon system
- **Jet**: anti- k_{T} algorithm to PF-like inputs
- *b-jet*: identified using secondary vertex tagging
- *Hadronic tau*: narrow jet with specific decay signature
- *MET*: negative vector sum of transverse momentum (*hallmark of invisible particles escaping detector*)

Beyond these, we go outside the box to look for *<u>nonstandard objects and unusual signatures</u>*. like displaced/trackless jets, secondary vertices, ...

BSM program at the LHC

• We have measured SM with unprecedented precision

ATLAS Public Results

CMS Public Results

- But many open questions Beyond the Standard Model (BSM)
- LHC's BSM search program targets broad phase space for new physics
- The high energy and growing dataset provides powerful environment to explore new physics
 - produce new heavy particles
 - probe rare or exotic signatures
- Increasingly, novel techniques, like machine learning are used to enhance signal sensitivity

CMS-PAS-SUS-23-017

CMS-PAS-SUS-23-017

Phys.Rev.Lett. 134 (2025) 12, 121801

Dark sector map

Dark sector map

https://cms.cern/news/mapping-uncharted-territory-cms-reviews-searches-dark-matter

Search for DM+pencil jet

First search at LHC to use low-multiplicity jet signature and supervised machine learning to enhance signal sensitivity

Mass range considered DM candidate: 0.1 - 1 TeV Mediator: 2-5 TeV Z' particle: 0.3 - 3 GeV

800

600

(**GeV**) ²⁰⁰ ⁴⁰⁰

300

200

100

2000

No significant excess observed.

Exclude mediator mass upto 4.25 TeV for DM mass 100 GeV at 95% CL

Expand sensitivity: 1.8 TeV \rightarrow 4.2 TeV!

Search for mono-Higgs(bb)

DM with dark Higgs \rightarrow bb

Resolved & Merged SR, sliced further in MET regions

Dark Higgs scalar $s \rightarrow bb$,

Probe low ms region

Places stringent constraints Exclude $30 < m_s < 150$ GeV with Z' upto 4.8 TeV

Heavy resonances γ H and γ Z with bb

Target spin-1 Z' $\rightarrow \gamma H$ and spin-0 S $\rightarrow \gamma Z$

Boosted H/Z \rightarrow bb decay

Jet substructure algorithm (ParticleTransformer)

Jet mass regression (ParticleNet)

No significant excess observed

Most stringent limits to date

Exotic Higgs decay to 4 tau final state

 $H \rightarrow aa \rightarrow 4\pi$ final state Results presented: 4 GeV < ma < 15 GeV $a \rightarrow 2\tau \rightarrow \mu \tau_{\rm b}$ boosted decay product

Exotic Higgs decays Summary from ATLAS

aa)

10

ATLAS Preliminary

July 2022

Anomaly detection for dijet resonance search

Resonances Status ATLAS-HMBS-2024-34 arXiv:2502.09770

14

Weakly supervised ML to search for resonant signal, localized peak in m_{...}

on Limit BC) [fb]

dd)r

ರ

Use 2 ML strategies to estimate backgrounds in different SRs. In each SR, search for local excess across various models

Optimized to be model-independent Aims for sensitivity to broad range of new physics 95% CL upper limits on $\sigma(pp \rightarrow A \rightarrow BC)$ set by the 2 ML strategies for 20 signal models ATLAS $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹ $\varepsilon = 0.02$ M, τ₂₁ 20 Exp. CURTAINs Obs. CURTAINs Exp. SALAD Obs. SALAD Exp. $\pm 1\sigma$ Exp. $\pm 2\sigma$ Obs. Dijet $\left(\frac{2m}{Dr} < 0.4\right)$ Obs. Dijet $\left(\frac{2m}{n} > 0.4\right)$ Obs Diboson V′2600 V′2800 V′3000 signal model

Similar performance, stronger limits for some models than existing di-jet searches

Summary of Diboson resonances

HVT model C: $g_F = 0$, $g_H = 1$

[†]with $\ell = \mu, e$

*small-radius (large-radius) jets are used in resolved (boosted) events

15

arXiv:2503.17186

CMS-PAS-SUS-24-003, CMS-PAS-SUS-24-012, CMS-PAS-EXO-23-017

CMS-PAS-SUS-23-014

Search for direct slepton production

Supersymmetry ATLAS-HMBS-2024-64 arXiv:2503.17186

Uses cut-and-count & BDT methods, each optimized for different Δm splittings

For the first time, sensitivity across full

Search for Electroweakinos production

CMS-PAS-SUS-24-003

CMS covers full Δm spectrum in compressed scenario!

Comprehensive search with boosted objects

Search for SUSY in final states with highly Lorentz-boosted top guarks, W, Z, H, or leptonic jets

- Razor kinematic variables: signal-like localized peak, falling background
- Deep neural network, ParticleNet tagger for boosted object reconstruction

Supersymmetry

CMS-PAS-SUS-23-014

Summary of ATLAS SUSY searches

	ATLAS S July 2024	TeV	ATLAS Preliminary $\sqrt{s} = 13$ TeV					
	Model	Si	ignature	∫£ dt [fb	¹] Mass limit		i i i	Reference
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	0 e,µ mono-jet	2-6 jets E_{γ}^{t} 1-3 jets E_{γ}^{t}	niss 140 niss 140	q [1x, 8x Degen.] 1.0 q [8x Degen.] 0.9 1.0 <th1.0< th=""> <th1.0< th=""> 1.0</th1.0<></th1.0<>	1.85	m($\tilde{\ell}_{1}^{0}$)≤400 GeV m(\tilde{q})-m($\tilde{\ell}_{1}^{0}$)=5 GeV	2010.14293 2102.10874
	ğğ, ğ→qqXı	$0 e, \mu$	2-6 jets E_{γ}^i	140	ğ ğ Forbidden	1.15-1.95	2.3 m($\tilde{\chi}_1^0$)=0 GeV m($\tilde{\chi}_1^0$)=1000 GeV	2010.14293 2010.14293
gluino	\tilde{S} $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}W\tilde{X}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	1 e,μ ee,μμ 0 e,μ SS e,μ	2-6 jets 2 jets E_{γ}^{π} 7-11 jets E_{γ}^{π} 6 jets	niss 140 niss 140 140 140	8 Ř Ř Ř 1.15	1.97	2 m(k ⁿ ₁)<600 GeV 2 m(k ⁿ ₁)<700 GeV m(k ⁿ ₁)<700 GeV m(k ⁿ ₁)<600 GeV m(k ⁿ ₁)=200 GeV	2101.01629 2204.13072 2008.06032 2307.01094
	$\xi \tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 b E ^r ₇ 6 jets	niss 140 140	⁸ / ₈ 1.25		2.45 m($\tilde{\chi}_1^0$)<500 GeV m(\tilde{g})-m($\tilde{\chi}_1^0$)=300 GeV	2211.08028 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b E ₇	niss 140	$\frac{\tilde{b}_1}{\tilde{b}_1}$ 0.68 1.255		$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ 10 GeV $< \Delta m(\tilde{b}_{1}, \tilde{\chi}_{1}^{0}) < 20 \text{ GeV}$	2101.12527 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 -$	$bh\tilde{\chi}_{1}^{0} = 0 e, \mu$ 2 τ	6 b E	niss 140 niss 140	δ ₁ Forbidden 0.23-1.35 δ ₁ 0.13-0.85		$\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 2103.08189
sbottom	$\begin{array}{l} \tilde{I}_{1}\tilde{I}_{1}, \tilde{I}_{1} \rightarrow \tilde{\mathcal{U}}_{1}^{0} \\ \tilde{I}_{1}\tilde{I}_{1}, \tilde{I}_{1} \rightarrow \mathcal{W}b\tilde{\mathcal{V}}_{1}^{0} \\ \tilde{I}_{1}\tilde{I}_{1}, \tilde{I}_{1} \rightarrow \tilde{\mathcal{W}}b\tilde{\mathcal{V}}_{1}^{0} \\ \tilde{I}_{1}\tilde{I}_{1}, \tilde{I}_{1} \rightarrow \tilde{\tau}_{1}bv, \tilde{\tau} \\ \tilde{I}_{1}\tilde{I}_{1}, \tilde{I}_{1} \rightarrow c\tilde{\mathcal{X}}_{1}^{0}/\tilde{c}\tilde{c} \end{array}$	$0.1 \ e, \mu$ $1 \ e, \mu$ $\rightarrow \tau \tilde{G}$ $1.2 \ \tau$ $\tilde{c} \rightarrow c \tilde{k}_1^0$ $0 \ e, \mu$	≥ 1 jet E_T^{t} 3 jets/1 b E_T^{t} 2 jets/1 b E_T^{t} 2 c E_T^{t}	niss 140 niss 140 niss 140 niss 140 niss 36.1	Till 1.25 Till Forbidden 1.05 Till Forbidden 1.4 E 0.85 1.4		$m(\tilde{x}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{x}_{1}^{0})=500 \text{ GeV}$ $m(\tilde{\tau}_{1})=800 \text{ GeV}$ $m(\tilde{x}_{0}^{0})=0 \text{ GeV}$	2004.14060, 2012.03799 2012.03799, 2401.13430 2108.07665 1805.01649
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0$	$\delta e, \mu$ $\delta Z/h\tilde{\chi}_1^0$ 1-2 e, μ	1-4 b E ₇	niss 140	<i>i</i> ₁ 0.55 <i>i</i> ₁ 0.067-1.18		$m(\ell_1, \hat{c}) \cdot m(X_1) = 5 \text{ GeV}$ $m(\hat{X}_2^0) = 500 \text{ GeV}$	2102.10874 2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{t}_2^+ \tilde{t}_2^0$ via WZ	3 e,µ Multiple ℓ/iets	1 b E ₇	niss 140			$m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{r}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ $m(\tilde{k}_{1}^{0})=0 \text{ winc-binc}$	2006.05880
electroweak	$\begin{array}{c} \chi_{1/2} \text{ via } wz \\ \\ \bar{\chi}_{1}^{\pm} \bar{\chi}_{1}^{\mp} \text{ via } WW \\ \bar{\chi}_{1}^{\pm} \bar{\chi}_{2}^{0} \text{ via } Wh \\ \bar{\chi}_{1}^{\pm} \bar{\chi}_{1}^{0} \text{ via } \bar{\ell}_{L/F} \\ \\ \\ \hline \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$e_{e,\mu}$ $e_{e,\mu}$ Multiple (/ jets $2 e, \mu$ 2τ $2 e, \mu$ 2τ $2 e, \mu$ $e_{e,\mu}$ $0 e, \mu$	≥ 1 jet E_{T}^{T} $E_{T}^$	nias 140 r 140	\$		$\begin{split} m(\tilde{r}_{1}^{*}) - m(\tilde{r}_{1}^{*}) &= S \ GeV \ \text{wine-bing} \\ m(\tilde{r}_{1}^{*}) - m(\tilde{r}_{1}^{*}) &= S \ even \ \text{wine-bing} \\ m(\tilde{r}_{1}^{*}) &= S \ even$	1911.12606 1908.02215 2004.1098.2108.07566 1909.628215 2420.20000 1909.628215 1911.12606 2401.14222
		$\begin{array}{c} 4 \ e, \mu \\ 0 \ e, \mu \end{array} \ge 2 \ e, \mu \end{array}$	$\geq 2 \text{ large jets } E_1^2$ $\geq 2 \text{ jets } E_1^2$ $\geq 2 \text{ jets } E_1^2$	niss 140 niss 140 niss 140	H 0.45-0.93 Ĥ 0.45-0.93		$BR(\tilde{\ell}_1 \rightarrow ZG)=1$ $BR(\tilde{\ell}_1^0 \rightarrow ZG)=1$ $BR(\tilde{\ell}_1^0 \rightarrow KG)=0.5$	2108.07586 2204.13072
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ pro	., long-lived $\tilde{\chi}_1^{\pm}$ Disapp. trk	1 jet E_7^r	niss 140	$\frac{\tilde{\chi}_{1}^{\pm}}{\tilde{\chi}_{1}^{\pm}}$ 0.21		Pure Wino Pure higgsino	2201.02472 2201.02472
long-lived	Stable ĝ R-hadr Metastable ĝ R- Di tr Di	$\begin{array}{lll} & & \mbox{pixel dE/dx} \\ \mbox{iadron}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	E_T^n E_T^n E_T^n E_T^r	niss 140 niss 140 miss 140 miss 140	ž [r(ž) =10 m] č,μ 0.36 τ 0.36	2.0	$ \begin{array}{c} \mathbf{k} \\ \mathbf$	2205.06013 2205.06013 ATLAS-CONF-2024-011 ATLAS-CONF-2024-011 2205.06013
RPV	$\begin{array}{c} \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{+}\rightarrow\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}/\tilde{\chi}_{2}^{0}\rightarrow\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}/\tilde{\chi}_{2}^{0}\rightarrow\\ \tilde{\pi}_{1}\tilde{\kappa}_{1}\tilde{\kappa}_{1}\tilde{\chi}_{1}^{0}\rightarrow\\ \tilde{\pi}_{1}\tilde{\kappa}_{1}\tilde{\kappa}_{1}\tilde{\kappa}_{1}^{0}\rightarrow\\ \tilde{\pi}_{1}\tilde{\kappa}_{1},\tilde{\kappa}_{1}^{-}\rho\delta\\ \tilde{\chi}_{1}^{+}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0}\rightarrow\\ \tilde{\chi}_{1}^{+}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0}\rightarrow\\ \end{array}$	$\begin{array}{ccc} \chi \rightarrow \ell \ell \ell & 3 \ e, \mu \\ \chi \ell \ell \ell \ell \nu & 4 \ e, \mu \\ \phi a q q \\ b s \\ b b s \\ & \\ \ell s \\ h s \\ & \\ \ell s \\ \mu \\ t h s, \tilde{\chi}^+_1 \rightarrow b h s \\ & 1 - 2 \ e, \mu \end{array}$	0 jets E_1^t ≥ 8 jets Multiple $\geq 4b$ 2 jets + 2 b 2 b DV ≥ 6 jets	140 140 140 36.1 140 36.7 140 136 140		55 1.6 1.4-1.85 1.6	Pure Wino m(ℓ ²)=200 GeV 2.34 Large ℓ ² / ₁ ; m(ℓ ²)=200 GeV bino like m(ℓ ²)=500 GeV BR(ℓ ₁ →qµ)=100%, cos#=1 Pure higgsino	2011.0643 2103.11884 2401.1633 ATLAS.COM-2016.003 2010.01015 1710.07171 2406.18367 2003.11856 2106.06000
	*Only a selection of phenomena is show simplified models, o	he available mass limits on n n. Many of the limits are bas f. refs. for the assumptions i	new states o sed on made.	r 1	0 ⁻¹		Mass scale [TeV]	

20

4. Exotic/Unconventional Signatures

arXiv:2505.01634

arXiv:2505.02429

CMS-PAS-EXO-24-012

Semi-visible jets or anomalous signature

displaced

prompt

Exotic Signatures

Search for emerging jets

visible

arXiv:2505.02429

ATLAS' first Run-3 result!

1. Cut and count based strategy

Prompt-Track-Fraction (PTF) measures

tracks starting near collision point

m_n = 10 GeV, m_n = 1.5 TeV

SR 🚛

ATLAS

10² = √s = 13.6 TeV, 51.8 fb⁻¹

10 high-m preselection

ATLAS

0

√s = 13.6 TeV 51.8 fb⁻¹

high-m preselection

m_x = 10 GeV, m_x = 1.5 TeV

 10^{-3}

10⁴

10³

10²

10-

10

10-4 10-5

10⁻⁶ 10⁻⁷ 10⁻⁸

- Uses high-level jet observables: displaced tracks and secondary vertex info; jet substructure - Re-interpretable and less model dependent

Data

Data

Leading jet N

- 2. *ML* based strategy
- Uses per-jet transformer-based ML algorithm
- to differentiate emerging jets from SM jets
- Maximizes sensitivity to specific models

Two categories: low and high dijet mass:

1. $m_{\rm H}$ < 1 TeV \rightarrow novel emerging jet trigger, trigger matched jets p_T > 250 GeV, PTF<0.04 2. $\tilde{m_{ii}}$ > 1 TeV \rightarrow high pT trigger, jet pT > 520 (300) GeV

First direct constraint on emerging jet pair production via s-channel mediator.

First application of a transformer-based algorithm for emerging

23

Resonance search using Scouting data

PARKING

NORMAL

ew 1000 events/second

HIGH LEVEL TRIGGER

LEVEL-1 TRIGGER

- Traditional triggers \rightarrow high p_T thresholds, low efficiency for low mass resonance
- *Run-3 Scouting* dataset \rightarrow lower p_T thresholds (records limited event info \rightarrow allows high event rate)
- Search for low mass resonance $(\phi \rightarrow \tau \tau \rightarrow \mu \tau_{h})$

Summary of Exotic searches

0.0-3.5 1811.00806 (2T + 2j)

Mass Scale [TeV]

0.5-6.6 1911.03947 (2)

Overview of CMS EXO results CMS Preliminary August 2023 137 fb⁻¹ 36 fb⁻¹ 0.5-7.9 1911.03947 (2) 0.35-4.0 1712.03143 (2u + 1y: 2e + 1y: 2i + 1y) Zy resonance Wy resonance 1.5-8.0 2106.10509 (1j + 1y) 137 fb⁻¹ 36 fb⁻¹ other 0.72-3 25 1808.01257 (1i + 1y) Higgs y resonance Color Octect Scalar, k1 = 1/2 0.5-3.7 1911.03947 (2) 137 fb⁻ 137 fb⁻ Scalar Diquark 0.5.7.5 1911.03947 (24 pp + Z/y + X0.6-1.6 2303.04596 (pp + //, pp + y 37 fb⁻¹ 138 fb⁻ $t\bar{t} + \phi$, pseudoscalar (scalar), $g_{res}^2 \times BR(\phi \rightarrow ee/\mu\mu) > = 0.01(0.003)$ 0.015-0.075 CMS-PAS-EXO-21-018 (31, 2 4/) $t\bar{t} + \phi$, pseudoscalar (scalar), $g_{1\mu\nu}^{c} \times BR(\phi + ee/\mu\mu) > = 0.03(0.04)$ $t\bar{t} + \phi$, pseudoscalar, $g_{2\mu\nu}^{2} \times BR(\phi + t\tau) > = 0.2$ 0.108-0.35 CMS-PAS-EX0-21-018 (3/, > 4/ 138 fb 0.045-0.35 CMS-PAS-EXO-21-018 (3/, a 4/) 138 fb $t\bar{t} + \phi$, scalar, $a\bar{t}_{--} \times \beta R(\phi \rightarrow \tau \tau) > = 0.2$ 0.02-0.1 CMS-PAS-EXO-21-018 (3/. = 4/ 138 fbquark compositeness (II), $\eta_{11,00} = 1$ 0.0-24.0 2103.02708 (2/) 140 fbcontact-interactions quark compositeness (II). $\eta_{LLNR} = -1$ 0.0-36.0 2103.02708 (2) 140 fb Excited Lepton Contact Interaction 0.2-5.6 2001.04521 (2e + 2i 77 fb⁻¹ 77 fb⁻¹ 0.2-5.7 2001.04521 (2µ+2j) vector mediator (qq), $g_0 = 0.25$, $g_{DH} = 1$, $m_g = 1$ GeV 0.35-0.7 1911.03761 (a 3) 18 fb⁻¹ vector mediator ($l\bar{t}$), $g_q = 0.1$, $g_{2W} = 1$, $g_l = 0.01$, $m_y > 1$ TeV (axial-)vector mediator ($q\bar{q}$), $g_q = 0.25$, $g_{2W} = 1$, $m_g = 1$ GeV 0.2-1.92 2103.02708 (2e, 2u) 140 fb-0.5-2.8 1911.03947 (2) 137 fb (axial-)vector mediator ($\chi\chi$), $q_1 = 0.25$, $q_{100} = 1$, $m_2 = 1$ GeV 0.0-1.95 2107.13021 (a 1i + p7" 101 fb-(axial)-vector mediator $(t\bar{t}), g_{g} = 0.1, g_{cot} = 1, g_{f} = 0.1, m_{g} > m_{med}/2$ 0.2.4.64 2103.02708 (2e, 2) 140 fb⁻¹ 36 fb⁻¹ scalar mediator (+ $t/t\bar{t}$), $g_{ij} = 1$, $g_{LH} = 1$, $m_{\chi} = 1$ GeV scalar mediator (+ $t\bar{t}$), $g_{ij} = 1$, $g_{DH} = 1$, $m_{\chi} = 1$ GeV 0.0-0.29 1901.01553 (0.1/+ = 2i+p?** 0.05-0.4 2107.10892 (0, 1f + ≥ 2j + p⁽¹¹⁾) 137 fb⁻¹ 101 fb⁻¹ scalar mediator (fermion portal), $A_i = 1, m_i = 1$ GeV oseudoscalar mediator (+)/V), $g_{ij} = 1$, $g_{DR} = 1$, $m_g = 1$ GeV 0.0-0.47 2107.13021 (≥ 1j + p 101 fb⁻¹ 36 fb⁻¹ dark matter pseudoscalar mediator (+t/tf), $q_n = 1$, $q_{\text{DH}} = 1$, $m_r = 1$ GeV 0.0-0.3 1901.01553 (0, 1/ + 2 2i + persi 137 fb⁻¹ 16 fb⁻¹ 36 fb⁻¹ 138 fb⁻¹ pseudoscalar mediator (+tř), $g_0 = 1$, $g_{0H} = 1$, $m_f = 1$ GeV 0.05-0.42 2107.10892 (0. 1/ + 2 2j + p7" 27 / 00-156 1010.10069 (4) 0.0-1.6 1908.01713 (h + p^{mm}) 1.5-5.1 2112.11125 (2) • p^{mm} complex sc. med. (dark QCD), mhr = 5 GeV, cTX = 25 mm Baryonic Z', g₁ = 0.25, g_{0tt} = 1, m_g = 1 GeV Z' mediator (dark OCD), more = 20 GeV, rev = 0.3, grave = grave $Z' = 2HDM, g_{Z'} = 0.8, g_{DW} = 1, tan\beta = 1, m_{\chi} = 100 \text{ GeV}$ Leptoquark mediator, $\beta = 1, \beta = 0.1, A_{\chi, DW} = 0.1, 800 < M_{LO} < 1500 \text{ GeV}$ 36 fb⁻¹ 77 fb⁻¹ 0.3-0.6 1811.10151 $(1\mu + 1j + p_{i}^{\text{pres}})$ axion-like particle, f⁻¹ = 1.2 TeV⁻¹ 5-2.0 CMS-PAS-EX0-21-007 (pp + yy) 103 fb⁻¹ 138 fb⁻¹ inelastic dark matter model, $y = 10^{-6}$, $\sigma_D = 0.1$ 0.003-0.08 2305.11649 (2 displaced µ + p()*** 0.02-0.08 2305.11649 (2 displaced µ + p^{res} 0.02-0.08 2305.11649 (2 displaced µ + p^{res} inelastic dark matter model, $y = 10^{-7}$, $g_D = 0.1$ dark Higgs, $g_4 = 0.25$, $g_{100} = 1$, $\theta = 0.01$, $m_2 = 200$ GeV, $m_2 = 700$ GeV 138 fb 0.16-0.352 CMS-PAS-EXO-21-012 (11+2j+p^{(r)ts}, 21+p^{(r)ts}) 137 fb-36 fb⁻¹ 38 fb⁻¹ 38 fb⁻¹ RPV stop to 4 quarks 0.08-0.52 1808.03124 (2): 4) **RPV** RPV squark to 4 quarks RPV gluino to 4 quarks 0.1-0.72 1806.01058 (2j) 0.1-1.41 1806.01058 (2) RPV stop scouting boosted 0.07-0.2 CMS-PAS-EXO-21-004 (scouting boosted dijet 128 fb-RPV mass degenerated higgsinos to trijet boosted scouting 0.07-0.075 & 0.095-0.105 CM5-PAS-EXO-21-004 (scouting boosted trijet 128 fb-36 fb-1 36 fb-1 ADD (jj) HLZ, nep = 3 0.0-12.0 1803.08030 (2) 0.0-9.1 1812.10443 (2y, 2f) ADD (yy, #) HLZ, np = 3 101 fb⁻¹ 36 fb⁻¹ 0.0-11-8 2107.13021 (= 1j + press ADD Gox emission, nup = 2 ADD 08H (ii) 0- = 6 0.0-8.2 1803.08030 (2j) 0.0-5.6 2205.06709 (ep) ADD QBH (ep), nED = 4 138 fb-1 ADD DBH (er) n= 4 0.0.5.2 2205.05709 (ex) 138 fb ADD QBH (µT), nED = 4 0.0-5.0 2205.06709 (µT) 138 fbextra dimensions ADD QBH (M), nto = 6 2 0.7 5 2305 7998 (V + 0 138 fb 140 fb⁻¹ 36 fb⁻¹ RS $G_{KK}(U)$, $k/\overline{M}_{Pl} = 0.1$ 0.0-4.78 2103.02708 (2/) RS $G_{\text{EX}}(yy), k/\overline{M}_{\text{III}} = 0.1$ 0.0-4.1 1809.00327 (2y) 0.5-2.6 1911.03947 (2j) 137 fb⁻¹ 36 fb⁻¹ RS G_{EC}(q0, gg), k/M₂₁ = 0.1 0.059 1803 08030 (2) RS OBH (ii) . Dec = 1 138 fb⁻¹ 36 fb⁻¹ RS QBH (yj), nED = 1 2.0.5.2 2305.07998 (¥+J) non-rotating BH, Mo = 4 TeV, Dro = 6 0.0-9.7 1805.06013 (>71(/, y)) 3-brane WED $g_{ex}(\phi + g \rightarrow ggg)$, $g_{grav} = 6$, $g_{det} = 3$, $\varepsilon = 0.5$, $m(\phi)/m(g_{ex}) = 0.1$ 2.0-4.3 2201.02140 (2) 138 fb⁻¹ 0.4-2.8 2202.06075 (f + pres) split-UED, u > 2 TeV 138 fb 137 fb⁻¹ excited light guark (gg), A = m." 0.5-6 3 1911.03947 (20) excited light quark (qq), $K = M_q$ excited light quark (qq), $f_3 = f = f = 1, K = m_q^*$ excited b quark, $f_5 = f = f = 1, K = m_q^*$ 138 fb-138 fbexcited ferminos 1.0-6.0 2305.07998 (y+) 1.0-2.2 2305.07998 (y+i) excited electron, $f_6 = f = f = 1$, $A = m_0^2$ excited muon, $f_5 = f = f = 1$, $A = m_0^2$ 0.25-3.9 1811.03052 (y+2e) 36 fb⁻¹ 36 fb⁻¹ 0.25-3.8 1811.03052 (y + 2u) 36 fb⁻¹ vMSM, $|V_{eW}|^2 = 1.0$, $|V_{\mu W}|^2 = 1.0$ 0.001-1.24 1802.02965; 1806.10905 (3µ; a 1j + 2µ) $\begin{array}{l} \text{VMSM}, \ |V_{eW}|^2 = 1.0, \ |V_{\mu M}|^2 = 1.0 \\ \text{VMSM}, \ |V_{eW}|^2 = 1.0, \ |V_{\mu M}|^2 = 1.0 \\ \text{VMSM}, \ |V_{eW}V_{\mu M}^*|^2 / (|V_{eW}|^2 + |V_{\mu M}|^2) = 1.0 \end{array}$ 0.001-1.43 1802.02965; 1806.10905 (3e; a 1j + 2e) 36 fb⁻¹ 36 fb⁻¹ 0.02-1.6 1806.10905 (≥ 1j + µ + e) heavy fermions Type-III seesaw heavy fermions, Flavor-democratic Vector like taus, Doublet 0.1-0.98 2202.08676 (3/, 2 4/, 1+ 3/, 2+ 2/, 3+ 1/, 1+ 2/, 2+ 1/ 138 fb 138 fb-0.1-1.045 2202.08676 (3t, ≥ 4t, 1x + 3t, 2x + 2t, 3x + 1t, 1x + 2t, 2x + 1t) Vector like taus. Singlet 0 125/0 15 2202 08676 (3/. > 4/. 1x + 3/. 2x + 2/. 3x + 1/. 1x + 2/. 2x + 1/) 138 fb-137 fb⁻¹ Z_{0} , narrow resonance, $\epsilon^2 = 8 \times 10^{-6}$ (90% C.L.) 0.0115-0.075 1912.04776 (20 Z_D , narrow resonance, $\epsilon^2 = 6 \times 10^{-5}$ (90% C.L.) Z_D , narrow resonance, $\epsilon^2 = 4 \times 10^{-5}$ (90% C.L.) 0.11-0.2 1912.04776 (2µ) 137 fb⁻¹ 97 fb⁻¹ 97 fb⁻¹ Z_D , narrow resonance, $\epsilon^2 = 7 \times 10^{-7}$ (90% C.L.) Z_D , narrow resonance, $\epsilon^2 = 3 \times 10^{-6}$ (90% C.L.) 0.0011-0.0026 CMS-PAS-EXO-21-005 (2µ) CMS-PAS-EXO-21-005 (2) 0.0042-0.0079 140 fb-SSM Z'UD 0.2-5.15 2103.02708 (2e. 2u) 140 fb⁻¹ 137 fb⁻¹ 36 fb⁻¹ 140 fb⁻¹ 138 fb⁻¹ 138 fb⁻¹ 138 fb⁻¹ SSM Z'(qq) 0.5-2.9 1911.03947 (2) Z'(qq) Superstring Z', 01-0.125 1905.10331 (11.1) 0.2-4.6 2103.02708 (2e, 2) heavy gauge bosons LFV Z', BR(eu) = 10% 0.2-5.0 2205.06709 (eu) 0 TeVLFV Z', BR(et) = 10% 0.2-4.3 2205.06709 (er) LEV Z. BRIAN = 10% 0.2-4.1 2205.06709 (ur) SSM W(IV) 0.4-5.7 2202.06075 (f + p("") 138 fb⁻¹ 78 fb⁻¹ 137 fb⁻¹ 36 fb⁻¹ Leptophobic Z' 5-0.45 1909.04114 [2] SSM W(qq) 0.5-3.6 1911.03947 (2j) LRSM Wa(Wa), Ma, = 0.5Mm 0.0-5.0 2112.03949 (20 + 21) SSM W(TV) 0.6-4.8 2212.12604 (T + ppin 138 fb⁻¹ 36 fb⁻¹ LRSM W₈(eN₈), M₈ = 0.5M_W 0.0-4.7 2112.03949 (2e + 2) $B_3 - L_2 Z^*$, $|g_{Z'}| \times [1 \text{ TeV}/m_2^*] = 0.08$, $B_{23} = 0$ LRSM $W_R(\tau N_R)$, $M_{3h} = 0.5M_{2h}$. 35-2.2 2307.08708 (Z'→µµ + ≥ 1b) 138 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹

10-

Axigluon, Coloron, cot# = 1

Summary of LLP searches

Common ATLAS and CMS summary plots for Higgs boson mediated hidden sectors involving long-lived particles

Overview: selective list of recent BSM results at LHC

Few more BSM results (not covered in this talk)

Vector-like T quark New scalar resonance Displaced dimuons $H \rightarrow aa \rightarrow 4e$ CMS-PAS-B2G-23-009 CMS-PAS-B2G-24-001 CMS-PAS-EXO-24-008 CMS-PAS-EXO-24-031

Vector-like leptons	<u>2503</u>
Lepto-quarks	<u>2503</u>
Heavy neutral leptons	<u>2503</u>
Long-lived particles	<u>2503</u>
New scalar with ttbar	<u>2503</u>

2503.22581 2503.19836 2503.16213 2503.20445 2503.17254

More exciting BSM results this afternoon:

Exotics results from ATLAS by Michael Revering Vector-like quarks at LHC by Elias Bernreuther New pseudoscalar search with ATLAS by Sara Khaled

Summary & Outlook

- ★ Exciting and wide range of BSM landscape at the LHC.
- ★ Many results from 140 fb⁻¹ of Run-2 dataset.
 Searches with Run-3 are ramping up.
- ★ Increasing the sensitivity to new physics with novel reconstruction techniques, and probing unexplored regimes, both at higher and lowest masses.
- ★ Highlighted only a selective sample of recent BSM results.

2025 BREAKTHROUGH PRIZE IN FUNDAMENTAL PHYSICS

Stay tuned for many more results from the LHC!