Experimental Results on Di-Hadron Production

INTERSECTIONS - CIPANP 2025

Research supported by DOE Office of Science

Madison, Wisconsin June 8-13, 2025

Nilanga Wickramaarachchi

06/10/2025

In the dihadron SIDIS we detect two hadrons in the final state

 $e^-p \rightarrow e^-h_1h_2X$

- Dihadron fragmentation function (DIFF) provide information on how the struck quark produces two hadrons
- Relative angular momentum between two hadrons provide more information on • hadronization compared to single hadron case
 - Quark transverse momentum angular momentum correlations
 - Access more structure functions

[1]

Dihadron momentum is defined as sum of momenta of two hadrons

 $P_h = P_1 + P_2$ M_h - dihadron mass

 Fractional energy of dihadron $P \cdot P_h$

$$P \cdot q$$

 Feynman-x variable used to consider current fragmentation region $x_F = \frac{2P_h \cdot q}{|q|W}$

Dihadron kinematics

Dihadron kinematics

$$\phi_{R} = \frac{(\vec{q} \times \vec{l}) \cdot \vec{R}_{T}}{|(\vec{q} \times \vec{l}) \cdot \vec{R}_{T}|} \arccos \frac{(\vec{q} \times \vec{l}) \cdot (\vec{q} \times \vec{l})}{|\vec{q} \times \vec{l}| |\vec{q} \times \vec{l}|}$$
$$\vec{R}_{T} = \frac{z_{2}\vec{P}_{1}^{\perp} - z_{1}\vec{P}_{2}^{\perp}}{z_{1}}$$

Provides additional degrees of freedom ϕ_R , θ and M_h compared to single hadron SIDIS

Transverse momentum dependent PDFs

- Depends on x and transverse momentum p_T^2 of struck quark
- Twist-t means contribution to cross section suppressed by $\left(\frac{M}{O}\right)^{1-2}$

Twist-2

U - unpolarized L - longitudinally polarized T - transversely polarized

[2]						
			Quark			
			U	L	Т	
	uc	U	f^{\perp}	g^{\perp}	h, e	
	Nucleo	L	f_L^{\perp}	g_L^{\perp}	h_L,e_L	
		Т	f_T, f_T^{\perp}	$g_T,\ g_T^\perp$	h_T, e_T, h_T	

Twist-3 sensitive to quark-gluon correlations

Dihadron fragmentation functions

- Depends on *z*, M_h and transverse momentum k_T^2 of fragmenting quark (k = p + q)
- Probability difference of quark with a certain polarization to fragment into unpolarized hadrons

Dihadron SIDIS cross section

Cross section components for certain polarization states of beam and target

$$d\sigma_{LU} = \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e \sum_{l=0}^{l_{max}} \left\{ C(x, y) \sum_{m=1}^{l} \left[P_{l,m} \sin(m(\phi_h - \phi_{R_\perp})) 2 \left(F_{LU}^{P_{l,m}} + W(x, y) \sum_{m=-l}^{l} P_{l,m} \sin((1-m)\phi_h + m\phi_{R_\perp}) F_{LU}^{P_{l,m}} \sin((1-m)\phi_h + m\phi_{R_\perp}) \right\}$$

- $F_{VV}^{m(\phi_h,\phi_R)}$'s are structure functions which can be written as convolutions of TMD PDF and **DIFF**
- $P_{l,m}$'s are Legendre polynomials depend on $\cos \theta$
- Limit $I_{max} = 2$ (dihadron invariant mass in CLAS12 limited to around 1 GeV)
- Consider integration over θ
- Cross section is related to azimuthal modulations of angles ϕ_h and ϕ_R

 $\underbrace{\lim_{k,m} \sin(m(\phi_h - \phi_{R_\perp}))}_{U,T} + \epsilon F_{LU,L}^{P_{l,m}} \sin(m(\phi_h - \phi_{R_\perp})) \right)$

Dihadron SIDIS cross section

$$d\sigma_{UL} = \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) S_L \left\{ A(x, y) \sum_{\ell=1}^{\ell_{max}} \sum_{m=1}^{\ell} P_{\ell,m} \sin(-m\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin(-m\phi_h + m\phi_{R_\perp}) \right. \\ \left. + B(x, y) \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \frac{\sin((2-m)\phi_h + m\phi_{R_\perp})}{UL} \right\}$$

$$\left. + V(x, y) \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \frac{\sin((1-m)\phi_h + m\phi_{R_\perp})}{UL} \right\}.$$
[3]

$$d\sigma_{LL} = \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x}\right) \lambda_e S_L$$

$$\times \sum_{\ell=0}^{\ell_{\max}} \left\{ C(x, y) \sum_{m=0}^{\ell} 2^{2-\delta_{m0}} P_{\ell,m} \cos(m(\phi_h - \phi_{R_\perp})) F_{LL}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_\perp})) + W(x, y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_\perp}) F_{LL}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_\perp}) \right\}$$

[3]

Structure functions, PDFs and DIFFs

Structure function and modulation	PDF and DIFF	Depolarization factor
$F_{LU}^{\sin(\phi_R)}$	eH_1^{\perp}	W
$F_{LU}^{\sin(\phi_h - \phi_R)}$	f_1G_1	\mathbf{C}
$F_{UL}^{\sin(\phi_R)}$	$h_L H_1^{\perp}$	V
$F_{UL}^{\sin(2\phi_R)}$	$h_{1L}^{\perp}H_1^{\perp}$	В
$F_{UL}^{\sin(-\phi_h + \phi_R)}$	$g_{1L}G_1$	A
F_{LL}^{const}	$g_{1L}D_1$	\mathbf{C}
$F_{LL}^{\cos(\phi_R)}$	$g_{1L}\tilde{D}$	W
F_{UU}	f_1D_1	A

$$A(\epsilon, y) = \frac{y^2}{2(1-\epsilon)}$$

$$V(\epsilon, y) = \frac{y^2}{2(1-\epsilon)} \sqrt{2\epsilon(1+\epsilon)^2} \sqrt{2\epsilon$$

$$B(\epsilon, y) = \frac{y^2}{2(1-\epsilon)} \epsilon$$

$$W(\epsilon, y) = \frac{y^2}{2(1-\epsilon)} \sqrt{2\epsilon(1-\epsilon)}$$

[4]

$$C(\epsilon, y) = \frac{y^2}{2(1-\epsilon)}\sqrt{1-\epsilon^2}$$

 $\vdash \epsilon)$

$$\epsilon = \frac{1 - y - \gamma^2 y^2 / 4}{1 - y + y^2 / 2 + \gamma^2 y^2 / 4}$$

 $\gamma = \frac{2Mx}{Q}$

CLAS12 detector

• In Hall B at Jefferson Lab

- Torus magnet and a solenoid magnet
- Particle identification by Cherenkov counters and time-of-flight detectors
- Luminosity 10³⁵ cm⁻²s⁻¹

Forward Detector

- HTCC
- Drift Chamber
- LTCC / RICH
- FTOF
- Forward Tagger
- Calorimeters

Central Detector

- Central Vertex Tracker
- CTOF
- Central Neutron Detector
- Back Angle **Neutron Detector**

Large coverage in both azimuthal and polar angles for charged and neutral particles

Unpolarized target data from CLAS12

- Longitudinally polarized 10.6 GeV electron beam
- Unpolarized LH₂ target
 - Access beam spin asymmetries

•
$$e^-p \rightarrow e^-\pi^+\pi^-X$$

• $e^-p \rightarrow e^-\pi^+\pi^0X$
• $e^-p \rightarrow e^-\pi^-\pi^0X$
• $e^-p \rightarrow e^-\pi^-\pi^0X$

- Unpolarized LD₂ target
 - Compare beam spin asymmetry for proton and deuteron targets

• $e^-p \rightarrow e^-\pi^+\pi^-X$

11

PRL 126, 152501 (2021)

R(z, M_h)

- mass from the finite quark masses
- an unpolarized nucleon immediately after scattering

H_1^{\triangleleft} extracted from Belle e⁺e⁻ data (PRL 107, 072004 (2011))

• First x moment of e(x) is related to the pion-nucleon σ term, representing the contribution to the nucleon

• Third x moment is proportional to the transverse force experienced by a transversely polarized quark in

- Results for $A_{LU}^{\sin(\phi_{R_{\perp}})}$ from CLAS12 and H_1^{\triangleleft} results from Belle used to extract twist-3 PDF e(x)

PRD 106, 014027 (2022)

e^P(x) extracted from CLAS and CLAS12 data

Two cases considered 1. Wandzura-Wilczek (WW) approximation (inner bars)

2. Beyond WW approximation (outer bars)

- Consistent results for LH_2 and LD_2 targets except for $|1,1\rangle$ partial wave
- Allows flavor decomposition of twist-3 PDF e(x)

$e^-p \rightarrow e^-\pi^+\pi^0 X, e^-p \rightarrow e^-\pi^-\pi^0 X$

• $\sin(\phi_h - \phi_R)$ modulation shows isospin symmetry of G_1^{\perp}

• Enhancement near ρ mass region

G. Matousek (Duke)

Data from kaon channels

C. Pecar (Duke)

Missing mass

- Uncertainties shown are only statistical
- Access to flavor dependence and K^{\star} , ϕ vector meson contributions to asymmetries

Longitudinally polarized target data from CLAS12

- Longitudinally polarized 10.6 GeV electron beam
- Longitudinally polarized hydrogen in solid ammonia (NH₃) target
 - Target polarization $\approx 85\%$
 - Dilution factor $\approx 3/17$
 - Access beam, target and double spin asymmetries (A_{LU}, A_{UL}, A_{LL})
 - $e^-p \rightarrow e^-\pi^+\pi^-X$

Likelihood PDF

- Use a "combined fit" to extract $A_{III}^{\psi_i}$, $A_{III}^{\psi_i}$ and $A_{II}^{\psi_i}$ simultaneously
- Probability distribution looks something like

weight * $(1 + P_b h_b \frac{W(\epsilon, y)}{A(\epsilon, y)} \frac{F_{LU}^{\sin \varphi_R}}{F_{LU}^{\cos t}} \sin \phi_R + \dots$

$$+P_t h_t f \frac{V(\epsilon, y)}{A(\epsilon, y)} \frac{F_{UL}^{\sin \phi_R}}{F_{UU}^{const}} \sin \phi_R + \dots$$

Total of 27 modulation amplitudes

(fit parameters give structure functions ratio $\frac{F_{XY}}{F_{UU}}$

- No published results on h_{I}
 - transversely polarized quark [6]

• x^3 moment of h_L describes the average longitudinal gradient of the transverse force that acts on a

Sign of gradient will help to study correlations between nucleon spin and its color magnetic field ²¹

CLAS12 results will allow extraction of h_{L} from data

Nucl. Phys. B375, 527 (1992)

arXiv:2111.01056

 Amplitude mostly negative Sensitive to $h_{1L}^{\perp}H_1^{\perp}$

Worm-gear 1

 $F_{UL}^{\sin(2\phi_R)}/F_{UU}$

• Sensitive to $g_{1L}G_1^{\perp}$

 $F_{UL}^{\sin(-\phi_h+\phi_R)}/F_{UU}$

- Asymmetry close to zero
- Spectator model prediction agrees with data

arXiv: 1702.07317 PRD 101, 054020 (2020)

COMPASS measurement from unpolarized muons off longitudinally polarized protons

 F_{LL}^{const} $F_{LL}^{\cos(\phi_R)}$ Sensitive to $\frac{g_{1L}D_1}{g_{1L}\tilde{D}}$

• Suggests \tilde{D} is roughly one order of magnitude smaller than D_1

Transversely polarized target data from COMPASS

Transversely polarized target at CLAS12

- Planned to start taking data in few years
- Transversely polarized solid NH₃ target and recoil detector
- Access transversity distribution (h₁) via dihadron production (will allow accessing x > 0.3 valence region)
 - First moment in x of h_1 gives the tensor charge

Yorgo Sawaya (POETIC 2025)

- Dihadron production in SIDIS provide more access to study nucleon structure and hadronization compared to single hadron production
- Beam, target and double spin asymmetry results from CLAS12 available with high statistics
 - Twist-3 PDF e(x) extracted for the first time
 - Opportunity to extract twist-3 PDF $h_{L}(x)$ from target spin asymmetry results
 - Flavor decomposition of PDFs with deuteron data and kaon final states
- Future results with transversely polarized target of CLAS12 will improve knowledge of transversity h₁ in the valence region

Backup - Summary of DIS kinematics

- Four momentum of virtual photon $\implies q = l l'$
- Virtuality of the virtual photon $\implies Q^2 = -q^2$
- Energy of the virtual photon $\implies \nu = \frac{P \cdot q}{M}$

(M - Mass of proton)

Squared invariant mass of photon-proton system

$$\implies W^2 = (P+q)^2 = M^2 + 2M\nu - Q^2$$

- Fraction of incoming electron energy transferred to the target proton $P \cdot q$ $\implies y = \frac{1}{P \cdot l}$

- Flat wrt x
- Lower amplitude from NH₃ data compared to LH₂ data
- Similar behavior with LH₂/LD₂

Sensitive to eH_1^{\triangleleft}

Х

- Sign change around ρ mass

 M_h (GeV)

References

- [1] T. Hayward, Ph.D. thesis "Dihadron beam spin asymmetries on an unpolarized hydrogen target with CLAS12" (2021)
- [2] S. Sirtl, Ph.D. thesis "Azimuthal asymmetries in semi-inclusive deep-inelastic hadron muoproduction on longitudinally polarized protons" (2016)
- [3] S. Gliske, A. Bacchetta, and M. Radici, Phys. Rev. D90, 114027 (2014)
- [4] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders, and M. Schlegel, JHEP 02, 093 (2007)
- [5] V. D. Burkert et al. (CLAS Collaboration), Nucl. Instrum.Methods Phys. Res., Sect. A 959, 163419 (2020)
- [6] M. Abdallah and M. Burkardt, Phys. Rev. D 94, 094040 (2016)

