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Visible Universe
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Only 5% of the universe is visible. 

The visible universe is made up of protons and neutrons, the inner structure of hadrons are sophisticated if we step closer.

Spergel, David N. "The dark side of cosmology: Dark matter and dark energy." Science 347.6226 (2015): 1100-1102.

Many experiments have been designed to probe the internal structure of hadrons.

Cr. NASA’s Goddard Space Flight Center

Cr. Dave Gaskell

CEBAF(JLab)

Cr. DESY
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Cr. CERN
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Cr. BNL
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P.S. The list of experiments here is not complete.



3D Imaging of Hadron
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Parton Distribution Functions (PDFs)

R. D. Ball, et al. [NNPDF], Eur. Phys. J. C 82 (2022)

Generalized Parton Distributions (GPDs)

Y. Guo, et al., JHEP 09 (2022)

Transverse-Momentum-Dependent distributions (TMDs)

V. Moos, et al., 2503.11201 (2025)

∫ d2 ⃗r⊥

∫ d2 ⃗r⊥

∫ d2 ⃗k⊥

∫ d2 ⃗k⊥

Wigner Distribution / GTMD
W(x, ⃗r⊥, ⃗k⊥)

 is the momentum fraction in the longitudinal (hadron momentum) direction.x



TMDs in Experiments
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TMDPDFs: the distribution densities of finding a parton carrying a longitudinal momentum fraction  and transverse 

momentum  in a hadron; 

TMD processes are important processes in high energy collisions, like Drell-Yan process on LHC and Semi-Inclusive DIS on 

EIC;

x

k⊥

R. Boussarie, et al., 2304.03302 (2023)

dσHa+Hb→ll̄+X

dQ2 dY d2 ⃗qT
=

4πα2

3NcQ2S ∑
i

e2
i ∫ d2 ⃗ka⊥ d2 ⃗kb⊥δ(2) ( ⃗qT − ⃗ka⊥ − ⃗kb⊥)

× f1(i/Ha) (xa, ⃗ka⊥) × f1(ī/Hb) (xb, ⃗kb⊥)



Significant progress has been made in the phenomenological parameterizations of TMDs 

Collins-Soper kernel (CS kernel): rapidity evolution kernel of TMDs 

Nucleon TMDs 

Unpolarized 

Sivers 

Boer-Mulders 

Pion TMDs: much less is known about the TMDs of the pion 

Unpolarized

Phenomenological Extraction of TMDs
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M. Bury, et al., PRL 126 (2021); I. P. Fernando, et al., Phys.Rev.D 108 (2023) …

A. Vladimirov, JHEP 10 (2019); M. Cerutti, et al. (MAP), Phys.Rev.D 107 (2023); 
P. C. Barry, et al. (JAM) Phys.Rev.D 108 (2023)

A. Bacchetta, et al. (MAP) JHEP 08 (2024); V. Moos, et al., 2503.11201 …

M. Bury, et al., JHEP 10 (2022); A. Bacchetta, et al., 
JHEP 10 (2022); V. Moos, et al., JHEP 05 (2024) …

Z. Lu, et al., Phys.Rev.D 81 (2010); X. Liu, et al., Eur.Phys.J.C 81 (2021) …

M. Bury, et al., JHEP 05 (2021)

As the lightest pseudo Nambu-Goldstone boson, the 3D structure of pion will help us understand the 
strong interaction, such as the origin of chiral-symmetry breaking.

Tomographic scan of the nucleon



Lattice QCD
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Path integral formalism 

                                          

Monte Carlo sampling 

Z = ∫ 𝒟A 𝒟ψ 𝒟ψ̄ eiSQCD[A,ψ,ψ̄] ZE = ∫ 𝒟Ue−Sg
E[U] ∫ 𝒟ψ𝒟ψ̄e−ψ̄M[U]ψ = ∫ 𝒟U e−Sg

E[U] det M[U]

⟨Ô⟩ =
1
ZE ∫ 𝒟U 𝒟ψ 𝒟ψ̄ Ô e−SQCD

E [A,ψ,ψ̄] =
1
N

N

∑
i=1

O[U(i)]

Uμ(x) = eigaAμ(x)

t → − itE
Sampling probability for configuration UWick rotation

Wilson link

Cr. BNL Cr. Olaf Kaczmarek



As a first-principle non-perturbative method, Lattice QCD provides independent predictions of TMDs. 

Mellin Moments 

Large Momentum Effective Theory (LaMET) 

CS kernel 

Intrinsic soft function 

Unpolarized 

Boer-Mulders

Lattice QCD Calculation of TMDs
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M. H. Chu, et al. (LPC), JHEP 08 (2023); A. Avkhadiev et al., PRL 132 
(2024); D. Bollweg, et al., Phys. Lett. B 852 (2024) …

L. Walter, et al. (LPC), 2412.19988; L. Ma, et al. (LPC), 2502.11807

JH, et al. (LPC), Phys.Rev.D 109 (2024)

Q. A. Zhang, et al. (LPC), PRL 125 (2020); M. H. Chu, et al. (LPC), 
JHEP 08 (2023)

B. Yoon, et al., 1601.05717; B. Yoon, et al., Phys. Rev. D 96 (2017)…

A. Avkhadiev et al., PRL 132 (2024)
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Large-Momentum Effective Theory (LaMET)
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TMDPDF is defined from a light-cone correlator in a hadron, which is Lorentz invariant. 

   

Define a quasi distribution with large-momentum states and time-independent operators. 

,   

LaMET enables us to obtain the precision-controlled x-distribution of TMDs in . 

f(x, b⊥, …) = ∫
∞

−∞

db−

2π
e−ib−(xP+) ⟨P ψ̄ (bμ) W⊏ (bμ,0) γ+

2
ψ (0) P⟩ ⟷ ⟨ | ⃗P | = ∞ O(t = 0) | ⃗P | = ∞⟩

f̃ 0
Γ(x, b⊥, Pz, μ) = Pz ∫

dz
2π

eiz(xPz) 1
2Pt

⟨P | ψ̄0 (z, b⊥) W⊏ (z, b⊥; 0) Γψ0 (0) |P⟩ ΛQCD ≪ | ⃗P | ≪
π
a

x ∈ [xmin, xmax]

SI (b⊥; μ) ⋅ f̃Γ (x, b⊥, Pz; μ) = f (x, b⊥; μ, ζ) Hf (x, Pz; μ)exp [ 1
2

ln
(2xPz)2

ζ
γMS (b⊥; μ)]+Power corrections

Parton model

Different orders of limit, but pert.

Large-momentum expansion

 is the TMD hard kernel for matching.Hf (x, Pz; μ) = |CTMD(xPz; μ) |2

Collins-Soper scale: ζ ∼ 2(xP+)2

X. Ji, Phys.Rev.Lett. 110 (2013) 
X. Ji, et al., Rev.Mod.Phys. 93 (2021) 

X. Ji, Nucl. Phys. B 1007 (2024)

Light-cone distribution:  

Cannot be directly calculated on the lattice

Quasi distribution:  

Directly calculable on the lattice

tz

TMD handbook 40

b

t

z

s

b-

T
s

Figure 2.1: Graphs of the Wilson line structure ,@(1⇠ , 0) of the unsubtracted TMD PDF 5
0 (u)
8/? (left) and

of , (1)) for the soft function (
0
=0=1

(right), defined in Eqs. (2.37) and (2.38). The Wilson lines (solid)
extend to infinity in the directions indicated. Adapted from [107].

Here the brackets [· · · ]� denote that the operators inside are considered with an additional
rapidity regulator �, where the details on methods for how this is done are left to Sec. 2.4
below. Note that by Poincaré invariance, the proton matrix element in Eq. (2.37) only depends
on the difference 1

⇠ � 0 = 1
⇠ of the positions of the quark fields. In parts of the literature,

the correlator is defined as #̄0
8
(0),@(0, 1⇠)✏

+

2 #0
8
(1⇠), which thus is related to our convention

by 1
⇠ ! �1⇠. In particular, this also reverses the sign in the Fourier transform.

In Eqs. (2.37) and (2.38) we have 1
⇠ = (0, 1�, b)), and the staple shaped Wilson lines

,@(1⇠, 0) and , (1)) are defined by products of straight line segments,

,@(1⇠, 0) = ,[0 ! �1=1 ! �1=1 + b) ! 1]
= ,=1

(1⇠;�1, 0),
1̂)

�
�1=1 ; 0, 1)

�
,=1

(0⇠; 0,�1) , (2.39)

, (1)) = ,[0 ! �1=1 ! �1=1 + b) ! b) ! �1=0 + b) ! �1=0 ! 0]
= ,=0

(1) ; 0,�1),=1
(1) ;�1, 0),

1̂)

(�1=1 ; 0, 1))
⇥,=1

(0; 0,�1),=0
(0;�1, 0),

1̂)

(�1=0 ; 1) , 0) , (2.40)

with 1̂
⇠
)
= 1

⇠
)
/1) . For later use we also define a generalized version of the first product of

Wilson lines, where we take G
⇠ = (0, G�, x)) and H

⇠ = (0, H�, y)) as the two endpoints,

,@(G⇠, H⇠) = ,[G ! �1=1 + G ! �1=1 + H ! H]
= ,=1

(G⇠;�1, 0),�̂

�
�1=

⇠
1
+ H

⇠
)
; 0, |x) � y) |

�
,=1

(H⇠; 0,�1) , (2.41)

and here �̂⇠ = (G) � H))⇠/|x) � y) |. Here the Wilson line along a generic path ✏ is defined by
the path-ordered exponential

,[✏] = % exp

�8 60

π
✏

dG⇠�20
⇠ (G) C2

�
, (2.42)

b⊥

t
z

q

q

bz

LLorentz boost & Matching

https://arxiv.org/pdf/1305.1539
https://arxiv.org/pdf/2004.03543


Soft Function
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The soft gluon radiation will lead to the existence of soft functions; 

Due to the gluon radiation in the collinear mode, the soft function contains the 

well-known rapidity divergence; 

The soft function can be separated into two parts: 

Rapidity evolution kernel: CS kernel  

Rapidity independent part: intrinsic soft function  

CS kernel can be extracted from the rapidity evolution of TMDs 

γMS (b⊥; μ)

SI(b⊥; μ)

γMS(b⊥, P1, P2; μ) =
1

ln (P2/P1)
ln

Hf (x, x̄, P1; μ) f̃γt (x, b⊥, P2; μ)
Hf (x, x̄, P2; μ) f̃γt (x, b⊥, P1; μ)

After regularization, the rapidity evolution is controlled by Collins-Soper scale: ζ ∼ 2(xP+)2

M. Ebert, PhD Thesis (2017)

∫
Q

qT

dk
k

full 

= lim
τ→0

[∫
Q

0

dk
k

Rc(k, τ)

collinear 

+ ∫
∞

qT

dk
k

Rs(k, τ)

soft 

] = ln
Q
qT

SI (b⊥; μ) ⋅ f̃Γ (x, b⊥, Pz; μ) = f (x, b⊥; μ, ζ) Hf (x, Pz; μ)exp [ 1
2

ln
(2xPz)2

ζ
γMS (b⊥; μ)]+Power corrections

 is the TMD hard kernel for matching.Hf (x, Pz; μ) = |CTMD(xPz; μ) |2



Soft Function
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The intrinsic soft function cannot be directly calculated on lattice because of 

two light-like Wilson lines in different directions 

Fortunately, it can be extracted from the meson form factor 

 

The form factor satisfies the factorization formula 

 

Therefore, the intrinsic soft function can be extracted via 

 with 

F (b⊥, P1, P2, Γ, Γ′ ) ≡ − 4Nc
⟨P2 q̄ (b⊥) Γq (b⊥) q̄(0)Γ′ q(0) P1⟩

f 2
π(P1 ⋅ P2)

F(b⊥, Pz) = ∫ dx1dx2 HF(x1, x2, Pz; μ) ϕ†(x1, b⊥, yn; μ, ζ1, ζ̄1) ϕ(x2, b⊥, − yn; μ, ζ2, ζ̄2)

SI(b⊥; μ) =
F(b⊥, Pz)

∫ dx1dx2HF(x1, x2, Pz; μ)Φ̃†(x1)Φ̃(x2)
Φ̃(x) ≡

ϕ̃Γ (x, b⊥, Pz; μ)
Hϕ (x, x̄, Pz; μ)

Z. F. Deng, et al., JHEP 09 (2022)

X. Ji, et al., Nucl.Phys.B 955 (2020)

, where  is the Sudakov kernel.HF(x1, x2, Pz; μ) = CSud(x1, x2, Pz; μ) ⋅ CSud(x̄1, x̄2, Pz; μ) CSud

X. Ji, et al., Nucl.Phys.B 955 (2020)

 is TMD wave function.ϕ(x, b⊥, …) = ∫
∞

−∞

db−

2π
e−ib−(xP+) ⟨0 ψ̄ (bμ) W⊏ (bμ,0) γ+γ5ψ (0) P⟩

 is quasi-TMD wave function.ϕ̃Γ (x, b⊥, Pz; μ)



Unpolarized TMD via LaMET
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In recent years, a lot of improvements of renormalization and matching has been developed in LaMET; 

Existing lattice calculations of the nucleon TMD still suffer from some systematics: 

Discretization effects;  

Excited-state contamination; 

Hadron momentum is not large enough … 

Due to the bad signal-to-noise ratio (SNR), it is hard to probe the large  region.b⊥

JH, et al. (LPC), Phys.Rev.D 109 (2024)

Unpolarized nucleon TMDPDF 

✦   

✦   

✦  Physical limit of  

✦  N3LL matching 

✦  NLO soft function

a = 0.12 fm

Pz
max = 2.58 GeV

mval
π

Y. Su, et al., Nucl. Phys. B 991 (2023); 
R. Zhang, et al., Phys. Lett. B 844 (2023); 
X. Ji, et al., 2410.12910 [hep-ph]

!"
!,
$ !
,%
,&

!
0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

!

!

"! = 0.12fm = 1.64GeV "# "! = 0.24fm = 0.82GeV "# "! = 0.36fm = 0.55GeV "#

"! = 0.48fm = 0.41GeV "# "! = 0.6 fm = 0.33GeV "#

This work

PV17

MAPTMD22

SV19

BHLSVZ22

0
0.2

0.4
0.6

0
0.2

0.4
0.6

ART23



Coulomb Gauge Method
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Define a quasi distribution in CG without Wilson line: 

 

Why choose CG? 

 becomes  in the infinite boost, so the quasi distribution in CG 
belongs to the universality class in LaMET; 

No linear divergence from the Wilson link, improving the SNR significantly; 

Simplified renormalization ; 

Larger off-axis momenta (3D rotational symmetry).

f̃ 0
CG(x, b⊥, Pz, μ) = Pz ∫

dz
2π

eiz(xPz) 1
2Pt

⟨P | ψ̄0 (z, b⊥) Γψ0 (0) ⃗∇⋅ ⃗A =0
|P⟩

⃗∇ ⋅ ⃗A = 0 A+ = 0

ψ̄0(z, b⊥)Γψ0(0) = Zψ(a)[ψ̄(z, b⊥)Γψ(0)]

X. Ji, Y. S. Liu, Y. Liu, J. H. Zhang and Y. Zhao, RMP 93 (2021)

Y. Zhao, PRL 133 (2024)

D. Bollweg, et al., Phys.Lett.B 852 (2024)

Collins-Soper kernel in CG v.s. GI

X. Gao, W. Y. Liu and Y. Zhao, PRD 109 (2024)

The results in CG and GI are consistent with the same lattice setup; 

Compared with the GI method, CG method has much better SNR.



Numerical Results

16



Lattice Setup
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SI (b⊥; μ) ⋅ f̃Γ (x, b⊥, Pz; μ) = f (x, b⊥; μ, ζ) Hf (x, Pz; μ) exp [ 1
2

ln
(2xPz)2

ζ
γMS (b⊥; μ)] + Power corrections

CS kernelIntrinsic soft function

Quasi-TMD TMDPDF Hard kernel

Quasi-TMDWF 

Meson Form Factor

2+1 flavor HISQ ensemble by HotQCD with volume ; 

Lattice spacing is ; 

Pion mass of sea quark: ;

Ls × Lt = 483 × 64

a = 0.06 fm

msea
π = 160 MeV

Pion mass of valence quark for quasi-TMD: ; 

Off-axis ( ) hadron momenta for quasi-TMD: ,  and ;

mval
π = 300 MeV

⃗n = (1,1,0) 1.83 GeV 2.43 GeV 3.04 GeV

Pion mass of valence quark for qTMDWF and meson form factor: ; 

On-axis hadron momenta for qTMDWF: ,  and ; 

On-axis hadron momenta for meson form factor: .

mval
π = 670 MeV

3.44 GeV 3.87 GeV 4.30 GeV

2.58 GeV

Dispersion relation: E2 = m2
0 + c1 P2 + c2 a2P4



Collins-Soper Kernel
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DWF24 is another lattice calculation using the CG method on chirally symmetric domain-wall fermion configurations; 

There is a notable tension among recent results in phenomenology (MAP24FI & ART25); 

Both remain consistent with this work due to the large uncertainty; 

The large uncertainty is mainly caused by the small Lorentz boost factor at such a heavy pion mass ( );mval
π = 670 MeV

The curve can be more flat with larger boost factor.

γMS(b⊥, P1, P2; μ) =
1

ln (P2/P1)
ln

Hϕ (x, x̄, P1; μ) ϕ̃γzγ5 (x, b⊥, P2; μ)
Hϕ (x, x̄, P2; μ) ϕ̃γzγ5 (x, b⊥, P1; μ)

 is the TMD hard kernel for matching.Hϕ(x, x̄, Pz; μ) = CTMD(xPz; μ) ⋅ CTMD(x̄Pz; μ)



Pion Form Factor
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The form factor is defined as 

 

It can be extracted from the ratio 

 

The ratio in terms of correlators on lattice 

F (b⊥, Pz, Γ) ≡ − 4Nc
⟨−Pz q̄ (b⊥) Γq (b⊥) q̄(0)Γq(0) Pz⟩

f 2
π ((Pt)2 + (Pz)2)

RF (b⊥, Pz, Γ) ≡ − 4Nc
⟨−Pz q̄ (b⊥) Γq (b⊥) q̄(0)Γq(0) Pz⟩

⟨0 | q̄(0)γμγ5q(0) Pz⟩ ⟨−Pz q̄(0)γμγ5q(0) |0⟩

RF (tsep, τ) =
−4Nc

1 + (Pt /Pz)2

CF (tsep, τ)
C2pt (tsep/2)

2

We choose  to get leading-twist contribution, 
then take the Fierz rearrangement.

Γ ∈ {γ⊥, γ⊥γ5}

The 2pt is calculated using the new interpolating operator.

Kinematically-enhanced interpolating operator
R. Zhang, et al., 2501.00729 

 fma = 0.12

 fma = 0.06

}



Intrinsic Soft Function
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Our lattice results are consistent with the perturbation theory in the small  regime; 

Different momenta of quasi-TMDWF give consistent results; 

Thanks to the absence of linear divergence, our final results of the intrinsic soft function can go beyond  fm.

b⊥

b⊥ ∼ 1

Systematic uncertainty is estimated by the spread of the mean values between these 
three momentum pairs.

 with SI(b⊥; μ) =
F(b⊥, Pz)

∫ dx1dx2HF(x1, x2, Pz; μ)Φ̃†(x1)Φ̃(x2)
Φ̃(x) ≡

ϕ̃Γ (x, b⊥, Pz; μ)
Hϕ (x, x̄, Pz; μ)



Pion quasi-TMD Wave Function
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We did a discretized Fourier transform because of the good convergence in the -space; 

The CG matrix elements decay to zero with the error bars remain almost constant, making the FT easy to be under control.

λ



Pion TMD Wave Function
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The variation between different momenta remains mild in the moderate  region, demonstrating the validity of power 
expansion in large ; 

The combined systematics are estimated from two sources: 

Momentum variation: spread of central values between three momenta /  mean of central values of three momenta 

Vary the initial scale in the RG resummation of matching kernel by a factor of ; 

The combined systematics are used to quantify the moderate  region that LaMET can make reliable predictions; 

The convergence between three momenta near the endpoint regions can be improved with larger Lorentz boost factor.

x
Pz

2

30 % x

SI (b⊥; μ) ⋅ ϕ̃Γ (x, b⊥, Pz; μ) = ϕ(x, b⊥; μ, ζ, ζ̄)Hϕ (x, x̄, Pz; μ)exp [ 1
2

ln
(2xPz)2

ζ
γMS (b⊥; μ)]+Power corrections



Pion quasi-TMD Beam Function
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The CG matrix elements decay to zero with the error bars remain almost constant, making the FT easy to be under control. 

To remove the non-physical oscillation, we apply the extrapolation to make error bars converge to zero smoothly.   

Since quasi-TMD (in moderate ) is insensitive to the extrapolation strategies, the non-fit extrapolation is adopted here: 

, where the weight  linearly decays from 1 to 0 within two red dashed lines below.

x

h̃ext = w ⋅ h̃ + (1 − w) ⋅ 0 w(z)



Pion TMDPDF in the  Spacex
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The variation between different momenta remains mild in the moderate  region, demonstrating the validity of power 
expansion in large ; 

The combined systematics are estimated from two sources: 

Momentum variation: spread of central values between three momenta /  mean of central values of three momenta 

Vary the initial scale in the RG resummation of matching kernel by a factor of ; 

The combined systematics are used to quantify the moderate  region that LaMET can make reliable predictions;

x
Pz

2

30 % x

SI (b⊥; μ) ⋅ f̃Γ (x, b⊥, Pz; μ) = f (x, b⊥; μ, ζ) Hf (x, Pz; μ)exp [ 1
2

ln
(2xPz)2

ζ
γMS (b⊥; μ)]+Power corrections



Pion TMDPDF in the  Spaceb⊥

25

Thanks to the absence of linear divergence, we can calculate pion TMDPDF up to ; 

When  gets larger, the amplitude of TMDPDF is decreasing, while the the transverse correlation length stays roughly the 
same; 

When  gets closer to , we can find that the variance across different momenta becomes smaller, indicating the 
suppression of power correction; 

While when  gets closer to , the deviation from global analysis becomes larger, which may cause by the fact that the 
experimental data gives better constraints to the small  region;

b⊥ > 1 fm

x

x x = 0.5

x x = 0.5
x

A. Vladimirov, JHEP 10 (2019); M. Cerutti, et al. (MAP), Phys.Rev.D 107 (2023); P. C. Barry, et al. (JAM) Phys.Rev.D 108 (2023)



Pion TMDPDF in the  Spacek⊥
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We can give the -dependence thanks to the good SNR in CG; 

Extrapolate the large  using a simple Gaussian form:  ; 

Fourier transform to the  space: .

k⊥

b⊥ f(b⊥) = Ae−mb2
⊥

k⊥ f̃ (k⊥) = ∫
d2b⃗⊥

(2π)2
eb⊥⋅ ⃗k⊥f (b⊥) = ∫

d b⊥

2π
b⊥ ⋅ J0 ( b⊥ ⋅ k⊥ ) ⋅ f (b⊥)

A. Vladimirov, JHEP 10 (2019); M. Cerutti, et al. (MAP), Phys.Rev.D 107 (2023); P. C. Barry, et al. (JAM) Phys.Rev.D 108 (2023)



Summary
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Summary

This is the first lattice calculation of the pion unpolarized TMDPDF within LaMET framework; 

The novel CG method is employed to remove the linear divergence, so that to have a good SNR up to  fm; 

The soft function is extracted at NLL factorization using RG resummation, the results show consistency with perturbation 

theory; 

The TMDs, including CS kernel, intrinsic function, TMDWF and TMDPDF are calculated using the same lattice ensemble, 

and the results show consistency with existing studies, including phenomenology and lattice calculations; 

The outcome of this study highlights the efficacy of the CG quasi-TMD approach in probing the transverse momentum 

structure of hadrons; 

In the future work, we will apply the CG quasi-TMD approach on nucleon, and the lattice systematics like discretization 

effects and non-physical pion mass will be investigated in detail.

b⊥ > 1

28



Backup
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CS Kernel
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Gauge Fixing in Lattice QCD
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FCG[A, Ω] ≡
1
2

3

∑
μ=1

∫ d4xAa
Ωμ(x)Aμa

Ω (x)

δFCG[A, Ω] = −
3

∑
μ=1

∫ d4x(DΩ
μabθb)Aμa

Ω

= −
3

∑
μ=1

∫ d4x(∂μθa − gf cabAc
Ωμθb)Aμa

Ω

=
3

∑
μ=1

∫ d4xθa(∂μAμa
Ω )

FCG[U, Ω] ≡ −ℜ Tr∑
x

3

∑
μ=1

Ω†(x + ̂μ)Uμ(x)Ω(x)

Continuous Theory Lattice Theory

Find stationary points of the functional value.

* AΩμ(x) ≡ Ω†(x)Aμ(x)Ω(x) +
i
g

Ω†(x)∂μΩ(x)
Gauge fixing criterion in this work: variation of functional satisfies .δF/F < 10−8
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Ph. D. Thesis of Diego Fiorentini

The gauge fixing condition may have many solutions in Lattice QCD.

https://www.researchgate.net/publication/327060189_Non-perturbative_exact_nilpotent_BRST_symmetry_for_the_Gribov-Zwanziger_action
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Variation of the functional 

 

Residual gradient of the functional 

, 

δF/F < 10−8

θG ≡
1
V ∑

x

θG(x) ≡
1
V ∑

x

Tr [ΔG(x)(ΔG)†(x)] ΔG(x) ≡ ∑
μ

(AG
μ (x) − AG

μ (x − ̂μ))


