COHERENT Results and Status

Tulasi Subedi

On behalf of the COHERENT Collaboration

CIPANP 2025

Madison, WI

June 12, 2025

Neutrinos are elementary particles with zero charge, tiny mass, and weak interaction.

 $m_{\nu} << m_{e}$

Three flavors corresponding to three generations of leptons

Standard Model of Elementary Particles

Neutrinos are produced both naturally and from artificial sources.

Neutrino interacts with quarks and leptons via the weak nuclear force mediated by W[±] and Z⁰ bosons.

Charged current

q : quark l: e⁻, μ^- , τ^-

 $\nu_l + q \to l^\pm + q'$

Coherent Elastic neutrino-Nucleus Scattering (CEvNS)

Neutrino interacts with the entire nucleus instead of individual nucleons

 $\nu + A \rightarrow \nu + A$

CEvNS was first predicted in 1973 and is well known theoretically within the Standard Model.

Interaction probability of CEvNS is higher at lower energies

IBD : Inverse Beta Decay

 v_{e} -e : neutrino electron elastic scattering

NIN : Neutrino-Induced Neutron background

Although CEvNS cross-section is large, it is difficult to observe due to tiny nuclear recoil energies.

What would be helpful

- High flux neutrino source
- Background rejection
- Deploy close to the source

Measuring CEvNS has applications that ranges from testing the Standard Model to applications.

- Dark matter detection background
- Search physics beyond the Standard Model
- Astrophysical signals
- Supernova processes
- Understanding nucleus
- Applications

The Spallation Neutron Source at ORNL produces neutrinos through pion decay at rest.

Hg Capture Decay at rest τ ~ 0.03 μs Decay at rest **Pion decay at rest** τ ~ 2.2 μs $\pi^+ \to \mu^+ + \nu_{\mu}$ $\mu^+ \to e^+ + \nu_e + \bar{\nu}_{\mu}$

1.3 GeV proton linac1.8 MW beam power60 Hz pulsed source

Neutrino Alley at the SNS is a perfect location for CEvNS measurements.

SNS Basement → Neutrino Alley
Good shielding
20-30 m from the target

COHERENT first detected CEvNS in 2017 using a CsI[Na] detector deployed at the Neutrino Alley.

11.6 σ with full dataset

14.6 kg CsI[Na] scintillation detector

In 2020, COHERENT measured CEvNS in Ar using the CENNS-10 (LAr) detector

PRL 126, 012002 (2021)

- 24 kg Single-phase liquid argon
- 2×8" PMTs
- H₂O/Cu/Pb shielding

In 2024, COHERENT detected CEvNS on Ge with the Ge-Mini detector.

2.5

0

5

10

5.0

7.5

10.0

energy (keVee)

15

time (μs)

20

25

12.5

15.0

Total

 $- \bar{\nu}_{\mu}, \nu_{e}$

17.5

Total

 $\bar{\nu}_{\mu}, \nu_{e}$

fit residuals

30

20.0

fit residuals

- 18 kg High-Purity Germanium detector
- Shielding: Cu, HDPE, Pb, muon veto

The COHERENT measurements are in agreement with the Standard Model within one sigma.

Proves the N² dependence

However, accuracy is limited so far

Dominant source of uncertainty is neutrino flux uncertainty

Heavy water detector has been deployed to reduce systematic uncertainty of the SNS neutrino flux.

Reduce uncertainty from 10% to 2-3%

 $\nu_{\rm e}$ + d \rightarrow p + p + e⁻

D₂O volume with H₂O tail catcher, Pb shielding, and muon veto

JINST 16 P08048 (2021)

The second module for measuring charged-current interaction in oxygen is being commissioned.

- Measure charged-current ν_{e} +¹⁶O crosssection at SN energies
- Study background events

 $\nu_{\rm e}$ + ¹⁶O \rightarrow e⁻ + ¹⁶F*

H₂O volume with H₂O tail catcher, Pb shielding, and muon veto

The COHERENT NalvE detector measured the electronneutrino charged-current cross section on ^{127}I .

- 24 NaI[TI] scintillator crystal 185 kg
- Steel shielding
- Muon veto panel

A tonne-scale sodium iodide detector is being installed to measure CEvNS on sodium.

Measure CEvNS on ²³Na and CC on ¹²⁷I Three modules installed and taking data Analysis underway NalvETe (2.4 t Nal) Two more modules will be deployed soon

COH-Ar-750 with 480 kg fiducial volume will replace CENNS-10 (24 kg) detector for precision measurements.

~500 inelastics per SNS-year

Commissioning at ORNL

Cryogenic CsI detector will significantly improve the CEvNS measurement in CsI.

- Lower threshold
- High light yield
- Good timing resolution

Shielding

- 10cm HDPE
- 5cm Lead
- Steel frame

Will also study

- Neutrino nonstandard interaction
- Accelerator produced dark matter

6.6 kg Cryo-CsI

Detectors have been deployed and are being developed to study inelastic interactions.

Study neutrino-induced fission of Th (52 kg) Analysis in progress Study neutrino interaction on lead

Proposal: 250 kg LAr TPC for DUNE like CC detection

100 L water to measure ν_e -O CC

Summary

✤ CEvNS:

- Neutrino interaction with the entire nucleus, predicted in 1973
- Higher interaction probability at low energies but difficult to detect due to tiny nuclear recoil.

COHERENT Experimental Milestones:

- First CEvNS detection in 2017 (CsI[Na]), followed by Ar (2020) and Ge (2024) using beam neutrinos at SNS.
- > All measurements are in agreement with the Standard Model.
- ▶ Inelastic cross-section measurement on ¹²⁷I.

Advancements & Future Prospects:

- COHERENT expanding detector network and collecting more data at SNS for higher precision CEvNS and inelastic measurements
- Neutrino nonstandard interaction and dark matter searches

Thank you

