Prospects for detecting gamma rays from r-process producing supernovae

Zhenghai Liu (North Carolina State University)

With Evan Grohs (North Carolina State University) Kelsey A Lund (North Carolina State University) Gail C McLaughlin (North Carolina State University) Moritz Reichert (Universitat de València) Ian Roederer (North Carolina State University) Rebecca A Surman (University of Notre Dame) Xilu Wang (Institute of High Energy Physics, Chinese Academy of Sciences)

NC STATE UNIVERSITY

r-process

- Elements heavier than iron generally are synthesized in **astrophysical** sites via different processes.
- **R-process** (rapid neutron capture) is considered a major nucleosynthesis process responsible for forging heavy isotopes.

r-process rapid neutron captures X(n,γ)Y

Sites for r-process

- GW170817 confirms Neutron Star Mergers (NSM) as r-process sites.
- NSM might not be the only r-process site since it requires delay. It might be unable to explain the observed decrease in the Eu/Fe ratio (Côte et. al 2019)
- Other candidates include:
 - Neutron Star-Black Hole Mergers (e.g. Surman et al. 2008)
 - **Collapsar** (e.g. Popham et al. 1999)
 - Magnetar (e.g. Patel et al. 2025)
 - Magneto-Rotational Supernovae (Nishimura et al. 2015)

What are Magneto-Rotational SNe?

• Magneto-Rotational SuperNovae (MR-SNe) are energetic supernovae that have high (10¹²G) magnetic fields.

• These explosions have jets where the r-process could take place.

4

Beta decay related gamma signal from the r-process as a direct probe

- The beta decay daughters of the freshly synthesized r-process isotopes will sometimes gamma-decay and release a photon.
- This gamma radiation is a **direct probe of nucleosynthesis**.
- With proper instruments, we might be able to observe these gamma signals

Liu et.al 2025 (in prep)

Future event signal

- I want to predict what will the gamma signal looks like if a MR supernova event occurred in our galaxy (progenitor distance = 10 kpc).
- Also, I am interested in finding **features that could be observed by current and planned gamma ray telescopes**.
- These features will correspond to specific isotopes.

• The overall spectrum from nuclear decays for an MR-SNe at 10kpc.

Spectrum at 10 days

- The overall spectrum from nuclear decays for an MR-SNe at 10 kpc.
- Electron-positron annihilation radiation: Positrons are from: ⁵⁶Co→⁵⁶Fe + e⁺ + v.
 - e⁺e⁻ pairs form positronium:
 - Para- positronium (singlet state, 2γ)
 - Ortho- positronium (triplet state, 3γ)

- The **overall spectrum** from nuclear decays for an MR-SNe at 10 kpc.
- Electron-positron annihilation radiation: Positrons are from: ⁵⁶Co→⁵⁶Fe + e⁺ + v.

 e^+e^- pairs form positronium:

- Para- positronium (singlet state, 2γ)
- Ortho- positronium $(triplet state, 3\gamma)$

Detector sensitivities:

- SPI (current, out of service 2025)
- COSI (planned in 2027)
- GRAMS/AMEGO etc (Next-Generation detectors)

Pink Region: Signals
that are contributed
by beta plus decay or
electron capture.
These isotopes come
from explosive
burning and are also
expected from regular
core-collapse event
(such as ⁵⁶Ni or ⁵⁶Co).

 Blue Region: Signals that are contributed by beta minus decay. This is the region we are interested in.

Liu et.al 2025 (in prep)

Pink Region: Signals
that are contributed
by beta plus decay or
electron capture.
These isotopes come
from explosive
burning and are also
expected from regular
core-collapse event
(such as ⁵⁶Ni or ⁵⁶Co).

 Blue Region: Signals that are contributed by beta minus decay. This is the region we are interested in.

 Blue Region: Signals that are contributed by beta minus decay.

- For each feature in
 the gamma ray
 spectrum (binned by
 energy), we can use
 ENDF VIII nuclear
 data base to find the
 corresponding
 highest contributing
 isotope.
- Important isotopes at 10 days after explosion are: ¹³²Te, ¹³¹I, ¹³²I (all are near-second peak isotopes).

The same can be generalized for other times as well.

We identify near second peak/weak r-process isotopes such as ¹⁰³Ru, ¹⁰⁶Rh, ¹²⁵Sb to be particularly interesting and could have a high possibility of being detected by instruments.

Conclusion

-MR-SNe as a subtype of CCSNe may contribute to the Galactic inventory of heavy elements.

-The observation of gamma radiation from beta decays of newly synthesized unstable r-process isotopes would be a direct discovery of r-process formation in a supernova. Alternatively, the absence of such radiation could place a limit on the amount of element production from the r-process.

-Our findings suggest that if an r-process producing supernova event were to occur in our Galaxy, gamma-ray lines (¹³¹I,¹³²I,¹³²Te¹²⁵Sb, ¹⁰⁶Rh, ¹⁰³Ru,) are above sensitivity levels of gamma-ray telescopes (SPI, COSI, next-generation detectors).