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Joaqúın Grefa (Kent State University) QCD critical point from theory CIPAN 2025 1 / 28



Outline

1 The QCD phase diagram

2 Effective models for QCD

3 Lattice QCD constraints

4 Theory and Experiment

5 Summary
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QCD Phase Diagram

We can explore the QCD phase diagram by changing√
s in relativistic heavy ion collisions

Models predict a first order phase transition line with
a critical point

Lattice QCD is the most reliable theoretical tool to
study the QCD phase diagram.

Sign problem:

Equation of state for low to moderate µB/T .
Borsányi, Fodor, Guenther et al., PRL 126 (2021)
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Why a critical point?
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Model Requirements

We need a simplified theoretical framework that describes QCD
in the desired energy range.

Interpret data ⇐⇒ make predictions

Requirements:

• QCD symmetries, degrees of
freedom, thermodynamics, and/or
interactions.

• Agreement with Lattice EoS at
µB = 0

• Agreement with lattice
susceptibilities at µ = 0
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Critical point predictions as of some years ago

• Including the scenario of no critical point at all.
de Forcrand, Philipsen, JHEP 01, 077 (2007); VV, Steinheimer, Philipsen, Stoecker, PRD 97, 114030 (2018)
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Holography (Black Hole engineering - EMD model - gauge/gravity duality )

O DeWolfe et al. Phys.Rev.D 83, (2011). R Rougemont et al. JHEP(2016)102. R. Critelli et al., Phys.Rev.D96(2017).
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Holographic Bayesian Analysis: posterior critical points

(Tc, µBc)PHA = (104± 3, 589+36
−26) MeV, (Tc, µBc)PA = (107± 1, 571± 11) MeV.
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• Both Ansätze overlap at 1σ. Robust results!

M. Hippert, J.G., T.A. Manning. J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont,
M. Trujillo, arXiv:2309.00579.
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Functional methods

Based on the truncated expansion of the QCD functional, and requires control of errors to
compute thermodynamics.

Dyson–Schwinger Equations (DSE)

• integral equations derived from the
QCD action that relate the
propagators (Green’s functions) of
quarks and gluons to each other.

• are solved approximately using
truncation schemes and modeling of
the interaction vertices.

Functional renormalization group
(FRG)

• describing how the effective QCD
action changes as one varies the energy
scale.

• allows for a continuous evolution from
microscopic physics to macroscopic
phenomena, capturing quantum,
thermal, and density fluctuations along
the way.
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Effective QCD theories prediction

• Different effective approaches, all in excellent agreement with lattice QCD at µB = 0
(and µB/T ∼ 3.5), predict the location of the critical point in a similar region.

• If true, reachable in heavy ion collisions at
√
sNN ∼ 3− 5 GeV.
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Entropy density contours

• If lines of constant s cross, it suggests a first order phase transition with a CP;
otherwise, the EoS only exhibits a crossover.

Ts (µB;T0) = T0 + α2 (T0)
µ2
B
2 ; α2 (T0) = −2T0χB

2 (T0)+T 2
0 χ

B′
2 (T0)

s′(T0)
; χB

2 =
[
∂2(p/T )4

∂(µB/T )2

]
T

H. Shah et al. arXiv:2410.16026
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Entropy density contours

• Excelent agreement with state-of-the-art lattice QCD data up to µB/T = 3.5
Borsanyi et al., PRL 126, 232001 (2021)

µc
B = 602± 62 MeV T c = 114± 7 MeV

H. Shah et al. arXiv:2410.16026
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Constraints with improved lattice data

• New continuum extrapolated equation of state at zero density with improved
precision & new data at imaginary chemical potential

• CP excluded at µB <∼ 450 MeV

Borsanyi et al. arXiv:2502.1026
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Critical point predictions as of some years ago

• Including the scenario of no critical point at all.
de Forcrand, Philipsen, JHEP 01, 077 (2007); VV, Steinheimer, Philipsen, Stoecker, PRD 97, 114030 (2018)
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Critical point with new lattice constraints: no CP at muB < 450 MeV

• Including the scenario of no critical point at all.
de Forcrand, Philipsen, JHEP 01, 077 (2007); VV, Steinheimer, Philipsen, Stoecker, PRD 97, 114030 (2018)
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Current scenario

• Predictions converge to the same region...

because lattice QCD has not ruled out that region yet?

Adapted from H. Shah et al. arXiv:2410.16026
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Fluctuations

Cumulants measure the chemical potential derivatives of the QCD equation of state

Cumulants as moments of the
particle number distribution

variance: κ2 =
〈
(∆N)2

〉
= σ

skewness: κ3 =
〈
(∆N)3

〉
kurtosis: κ4 =

〈
(∆N)4

〉
− 3

〈
(∆N)2

〉2
κ2 ∼ ξ2, κ3 ∼ ξ4.5, κ4 ∼ ξ7

ξ → ∞

Cumulants as chemical potential
derivatives of the EoS

lnZ(T, V, µ) = ln
[∑

N eµN/TZce(T, V,N)
]

κn ∝ ∂n(lnZ)
∂µn
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cumulants

• Overall agreement with the baseline for
√
sNN ∼ 10− 20 GeV
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Factorial cumulants!

• Exhibit more structure
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factorial cumulants

V. Vovchenko, arXiv:2504.01368, and adapted from Stephanov, arXiv:2410.02861

non monotonic κ2/κ1, κ3/κ1 and maybe κ4/κ1

Factorial cumulants: Irreducible
n-particle correlations that remove
Poisson contribution and probe genuine
correlations
Ordinary cumulants: mix correlations
of different order
Ĉn ∼ ⟨N(N − 1)(N − 2) . . .⟩c

Ĉ1 = C1

Ĉ2 = C2 − C1

Ĉ3 = C3 − 3C2 + 2C1

Ĉ4 = C4 − 6C3 + 11C2 − 6C1

Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017)
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Summary

• No indication of critical behavior from lattice QCD for µB < 450 MeV.

• Several effective theories predict the location of the critical point to T ∼ 90− 120
MeV and µB ∼ 500− 650 MeV.

• No critical behavior describe proton cumulants at
√
sNN ≥ 20 GeV.

• This trend changes around
√
sNN ∼ 10 GeV; in particular, for factorial cumulants

and the presence of the CP could be a reasonable explanation.
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Ordinary vs. Factorial Cumulants in Heavy-Ion Collisions

Ordinary Cumulants
Cn ∼ ⟨δNn⟩
• Built from moments of distribution

(mean, variance, etc).

• Sensitive to critical fluctuations.

• Connected to thermodynamic
susceptibilities.

• Higher orders diverge near critical
point.

Factorial Cumulants
Ĉn ∼ ⟨N(N − 1)(N − 2) . . .⟩c

• Built from factorial moments.

• Vanish for Poisson baseline ⇒ better
contrast.

• More robust under detection
inefficiencies.

• Useful in experimental fluctuation
analyses.
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Which Cumulants Are Better for the QCD Critical Point?

Both are useful, but serve different purposes:

• Ordinary cumulants: Cn ∼ ⟨δNn⟩
• Theoretically well-defined.
• Connected to QCD susceptibilities.

• Factorial cumulants: Ĉn ∼ ⟨N(N − 1)(N − 2) . . .⟩c
• Cleaner signals under real-world detector conditions.
• Efficient background suppression (e.g., Poisson noise).

• Best approach: use both and compare.

See: Bzdak et al. Phys. Rept. 853 (2020), Kitazawa Asakawa PRC 85 (2012), STAR Collaboration (2022)

Joaqúın Grefa (Kent State University) QCD critical point from theory CIPAN 2025 3 / 6



What happens at finite/large densities?

• We need to merge the lattice QCD
EoS with other effective theories.

• Study the regime of validity of each
effective model.

• Constrained internal parameters to
adhere know experimental and
theoretical limits.

• Test models to validate/exclude
them.

• EoS to guide/interpret
experimental data.
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BQS EoS
10 < T < 600 MeV; µB < 450 MeV
J. Noronha-Hostler, et al., PRC (2019)

p(T, µB , µQ, µS)

T4
=

∑
i,j,k

1

i!j!k!
χ
BQS
ijk

(
µB

T

)i (
µQ

T

)j (
µS

T

)k

χ
BQS
ijk

=
∂i+j+k(p/T4)

∂
(
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T

)i
∂
(µQ

T

)j
∂
(

µS
T

)k

∣∣∣∣∣∣∣
µB,µQ,µS=0

2D Ising T.Ex.S
10 < T < 800 MeV; µB < 700 MeV
M. Kahangirwe, et al., PRD 109 (2024)

T
χB
1 (T, µB)

µB

= χ
B
2

(
T

′
, 0
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1 + κ
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(
µB
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+ κ
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(
µB

T

)4
+ . . .

]

• Includes a 3D Ising model critical behavior into a lattice
alternative expansion EoS.
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HRG Model
0 < T < 160 MeV; µB < 1000 MeV

V. Vovchenko, CPC (2019)

• Provides a realistic hadronic EoS at low T
• Interacting hadrons can be modeled by an

ideal gas of resonances.
• For a realistic EoS at higher densities,

Van der Waals interactions are added.
• Describes the liquid-gas phase transition.

Holography (NumRelHolo)
40 < T < 400 MeV; µB < 1200 MeV
J. G., et al., PRD (2021), PRD (2022)

• Based on the gauge/gravity duality and
constrained to reproduce lattice-QCD
thermodynamics

• Large coverage of the EoS in the
strongly-interacting regime.

• Predicts the location of the QCD CP.
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