

Recent RHIC measurements on quarkonium production and suppression

Kaifeng Shen

University of Science and Technology of China

(skfwyl@ustc.edu.cn)

15th Conference on the Intersections of Particle and Nuclear Physics

11 June 2025

Office of Science

D Experimental Probes for Deconfinement

D Quarkonia Physics at RHIC

D Summary and Outlooks

Relativistic Heavy Ion Collider (RHIC)

□ To explore some of Nature's most basic -- and intriguing -- ingredients and phenomena

Credit: the webpage of the physics of RHIC

Current experiments: STAR and sPHENIX

Enters 25th and final run: RHIC
 science program will be completed
 and Transition to the Electron-Ion
 Collider

Experimental Probes for Deconfinement

Heavy quarks mainly produced from initial hard partonic scattering, $m_{c,b} > \Lambda_{\rm QCD}$

Heavy-flavour as probes of _ the QGP

Experience the entire evolution of the QPG, loss energy through Gluon radiation or Collisional energy loss

The $Q\overline{Q}$ pair bound state can be dissociated or regenerated in the QGP

Credit: Boris Hippolyte & Qian Yang

Quarkonia production at RHIC

Collision energy dependence of QGP property

⁽STAR) Phys. Lett. B 771 (2017) 13-20

■ Measurement J/ψ suppression at different collision energies → understand collision energy dependence of QGP property

Beam Energy Scan II at STAR: Unique opportunity to study the collision energy dependence, 10-20 times higher statistics than BES- I

J/ψ suppression measured at different energies

X. Zhao and R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication)

■ No significant energy dependence of nuclear modification factor within uncertainties at $\sqrt{S_{NN}} \le 200 \text{ GeV}$

(NA50) Phys. Lett. B 477 (2000) 28 (ALICE) Phys. Lett. B 734 (2014) 314 (STAR) Phys. Lett. B 771 (2017) 13-20 (STAR) Phys. Lett. B 797 (2019) 134917 (ALICE) PLB 849 (2024) 138451

J/ ψ suppression measured at different systems

▶ The size of hot and dense medium → the corresponding J/ ψ suppression

□ In isobaric collisions, highest precision measurement at RHIC to date

D No significant collision system dependence of J/ ψ suppression at similar $\langle N_{\text{part}} \rangle$ range

${\rm J}/\psi~v_2$ at RHIC top energy

□ Smaller regeneration effect at RHIC compared to that at LHC ?

J/ ψ yield vs event multiplicity in p+p

Sensitive to underlying event activities, MPI

□ After subtracting the J/ ψ daughter-muon, the yields shift to lower $N_{ch}/\langle N_{ch}\rangle$

 The measurements are consistent with the PYTHIA 8 Detroit tuned with MPI calculations (within 1σ)

Charmonium sequential suppression

> The suppression level related to the binding energy of charmonium

 \Box First observation of charmonium sequential suppression in heavy ion collisions at RHIC (3.5 σ)

$\psi(2s)$ over J/ ψ ratio vs centrality and p_{T}

Centrality dependence trend at RHIC seems more similar to that at SPS than at LHC

□ Significantly lower than that in p+p and p+A collisions at p_T <2 GeV/c

$\psi(2s)$ over J/ ψ ratio in p+A collisions at RHIC

□ Final stat effect is significant, and larger in the backward rapidity where multiplicity is higher

□ Similar suppression pattern, weak energy dependence

$\boldsymbol{\Upsilon}$ suppression at different systems

Smaller regeneration effect compared to charmonia

Consistent suppression is observed
between isobar and Au+Au collisions in
similar $\langle N_{part} \rangle$ range

Hint of sequential suppression in isobaric collisions

⁽STAR) Phys. Rev. Lett. 130 (2023) 112301

Polarization and global spin alignment at RHIC

J/ ψ polarization in isobaric collisions

- > J/ ψ polarization → the production mechanism
- Possible difference between heavy ion collisions and p+p collisions
- > The J/ ψ decayed leptons: w(cos θ , ϕ) $\propto 1 + \lambda_{\theta} cos^2 \theta + \lambda_{\phi} sin^2 \theta cos 2\phi + \lambda_{\theta\phi} sin 2\theta cos\phi$

 $\square \ \lambda_{\theta} \text{ and } \lambda_{\phi} \text{ are consistent with zero within}$ uncertainties, indicate that no polarization is observed within current uncertainties

 No significant centrality dependence is observed

J/ψ global spin alignment in isobaric collisions

Respect to the Event Plane: axis orthogonal to reaction plane

D The ρ_{00} at RHIC is lower than 1/3 (3.5 σ), and comparable to LHC results

Energy correlator with Quarkonia tagged at RHIC

J/ ψ energy correlator

$$\Sigma(\cos\chi) = \int d\sigma \sum_{i} \frac{E_{i}}{M} \delta(\cos\chi - \cos\theta_{i}),$$

Phys. Rev. L 133, 191901 (2024)

□ J/ ψ as a tagged meson, sensitive to hadronization of $c\bar{c} \rightarrow J/\psi + X$

- \Box χ is measured in the J/ ψ rest frame:
 - Perturbative processes contribution
 dominate at cos(χ) < 0
 - ➢ Non-perturbative processes contribution dominate at $cos(\chi) ≥ 0$

J/ψ energy correlator measured at RHIC-STAR

■ The J/ ψ energy correlator has been measured firstly at STAR in p+p collisions at $\sqrt{s} = 500$ GeV

■ No significant $cos(\chi)$ dependence of the J/ ψ energy correlator at $cos(\chi) > 0$, while the measurement is different compared to that in Pythia8 (~7 σ)

Summary

D Quarkonia at RHIC:

- Collision energy and system dependence: no significant dependence has been observed; first measured charmonium sequential suppression in heavy ion collisions at RHIC
- > Polarization and spin alignment in heavy-ion collisions: J/ψ polarization around zero, ρ_{00} at RHIC is lower than 1/3 (3.5 σ)
- > Hadronization process: first measured J/ ψ energy correlator in p+p collisions
- > Photo-nuclear production: coherent J/ ψ strongly suppressed; evidence of decay anisotropy

Outlook: STAR experiment

□ Run23-25: large samples of p+p, (p+Au), and Au+Au collisions

□ STAR forward upgrade(2.5< $|\eta|$ <4): Forward Tracking System & Forward Calorimeter System STAR BUR Run25 2024

 $2.5 < \eta < 4$

Zhen Wang@QM2023

$\sqrt{s_{\rm NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$8B+5B / 1.2 \text{ nb}^{-1}+20.8 \text{ nb}^{-1}$	2023+2024+2025 (20 cryo-weeks)
200	Au+Au	$8B+9B / 1.2 \text{ nb}^{-1}+28.6 \text{ nb}^{-1}$	2023+2024+2025 (28 cryo-weeks)

Outlook: sPHENIX experiment

 During Run24, 107 pb⁻¹ photon/Jet calorimeter data, 13.28 pb⁻¹ photon/Jet full detector data, as well as 2.9 pb⁻¹ of streaming tracker data in p+p collisions

The full physics Run25 are ongoing (7 nb⁻¹ in Au+Au)

Alex Patton @ RHIC&AGS 2025

Outlook: Quarkonia at sPHENIX

D Quarkonia physics at sPHENIX:

- Probing transport coefficients
- Heavy-quark potential
- ➤ (p)NRQCD formalism

JaeBeom Park @ RHIC&AGS 2025

Back up

 $b/c \rightarrow e$: energy loss in QGP

- The b/c-decay electron R_{AA} are suppressed at high- p_T in Au+Au collisions at 200 GeV
- □ The b-decay electron R_{AA} are systematically larger than c-decay R_{AA} , consistent with mass hierarchy of parton energy loss
- Consistent with model calculations including mass-dependent energy loss mechanisms

(STAR) EPJC 82 (2022) 1150 Duke: Phys. Rev. C 92, 024907 (2015) PHSD: Phys. Rev. C 78, 034919 (2008), Nucl. Phys. A 831, 215 (2009)

$b/c \rightarrow e$: collectivity in QGP

- The e^{HF} have non-zero and comparable v_2 in Au+Au collisions at 54.4 and 200 GeV → indicates that charm quarks interact strongly with the QGP medium
- □ The $e^{\text{HF}} v_2$ at 27 GeV Au+Au collisions are consistent with zero
- The e^{HF} v₂ at 54.4 GeV Au+Au collisions are Consistent with model calculations, which assume that elastic collision scattering dominated

(STAR) Phys. Lett. B 844 (2023) 138071 TAMU: Phys. Rev. C 91,024904 (2015). PHSD: Phys. Rev.C 92, 014910 (2015), Phys. Rev. C 96,014905 (2017)