RECENT HIGGS MEASUREMENTS AT THE ATLAS EXPERIMENT

Lucrezia Boccardo on behalf of the ATLAS collaboration June 8th, 2025 CIPANP 2025, Madison, Wisconsin

- Since its discovery in 2012, the Higgs boson has always been one of the focuses of research in ATLAS, and we have now entered a precision measurement era.
- A simple equation: increasing statistics (Run 2 and Run 3) + innovative analysis techniques = ever-improving measurements.
- Featured in today's talk: production cross-section measurements, coupling measurements, width measurements: all in good agreement with the Standard Model!
- All measurements in the Higgs sector are intertwined with all the unresolved questions in today's physics!

- 1. Precision measurements of **production cross-sections** for different modes:
 - $H \rightarrow ZZ^* \rightarrow 4\ell \text{ <u>ATLAS-CONF-2025-002</u>}$
 - $VH, H \rightarrow WW^* \underline{\text{HIGG-2023-09}}$
 - $(ggF + VBF)H \rightarrow WW^* \underline{\text{HIGP-2024-07}}$
- 2. Width measurements:
 - $H^* \to WW \to \ell \nu \ell \nu \underline{\text{HIGP-2024-05}}$
- 3. Higgs boson pair production
 - $HH \rightarrow b\bar{b}\gamma\gamma$ <u>ATLAS-CONF-2025-005</u>

A

Università di **Genova**

SATLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ partial Run 3 differential measurement

- Four lepton decays have a small BR but can be **fully resolved** with high resolution.
- Inclusive and differential measurements and the first **13.6 TeV** production mode cross-section measurements.
- Production mode discrimination based on jet multiplicity and dijet invariant mass.
- The colors of the reconstructed categories highlight the relative contribution from the particle level bin.

*m*₄₁ [GeV]

Università di **Genova**

UNIVERSITÉ

SATLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ partial Run 3 differential measurement

- Inclusive fiducial and differential cross-sections generally in agreement with SM predictions \rightarrow sensitivity driven by $4\mu/2e2\mu$ channels.
- Neural network-based discrimination for **Higgs production modes** STXS measurement.
- VBF and VH probed together assuming SM values.
- Dominant uncertainty comes from limited data statistics.

$$\sigma_{\text{fid}} \equiv \sigma \cdot \mathcal{B}(H \rightarrow ZZ^* \rightarrow 4\ell) = 3.5^{+0.6}_{-0.5} \text{ fb}$$

$$\sigma_{\text{total}} = 57^{+10}_{-9} \text{ pb}$$

ATLAS-CONF-2025-002

Università di **Genova**

states

signal-

VH

- Both fully-leptonic ٠ and semi-leptonic final states
- Use of BDTs, ٠ ANNs, and RNNs for signalbackground discrimination
- SR definition ٠ based on n. of leptons
- Stage 1.2 STXS ٠ measurements

SR SR discriminant Relevant CR(s) Channel Opposite-sign 2ℓ ANN_{DFOS} (2(a)) Top, Z+jets, WW SS2µ RNN output (3(a)) Same-sign 2ℓ SS2*e* RNN output (3(b)) SSDF RNN output (3(c)) ANN_{Zdom} (4(a)) Z-dominated 3ℓ WZ 0-jet, $WZ \ge 1$ -jets Z-depleted ANN^{Δ}_{Zdep} (4(b)) 1-SFOS 1-SFOS BDT output (5(a)) ZZ 4ℓ 2-SFOS 2-SFOS BDT output (5(b))

9/6/25

Lucrezia Boccardo

<u>HIGG-2023-09 (VH)</u>

7

HIGP-2024-07 (ggF+VBF)

SATLAS $H^* \to WW \to \ell \nu \ell \nu Run 2$ off-shell production measurement **WUNIVERSITÉ** GENÈVE

- Precision measurements of Γ_H are essential for BSM studies, but limited resolution at the ATLAS detector makes on-shell measurements challenging;
- \rightarrow off-shell production is enhanced at invariant masses above $2m_V$.
- This analysis includes both same flavour and different flavours decays of the W boson, including the intermediate τ decay;
- 6 analysis signal regions, each with a DNN to classify in three categories: signal, full process (SBI) and non-interfering background.
- The V_{31} variable is used as a discriminant as a proxy for m_{WW} : a combination of dilepton invariant mass and the transverse mass of the dilepton+missing energy system;
- CRs are used to constrain non-interfering background normalization.

<u>HIGP-2024-05</u>

A

Università di **Genova**

SATLAS $H^* \to WW \to \ell \nu \ell \nu Run 2$ off-shell production measurement **W** DE GENÈVE

$$\sigma_{i \to H^* \to f}^{\text{on-shell}} \sim \frac{g_i^2 g_f^2}{m_H \Gamma_H} \qquad \qquad \sigma_{i \to H^* \to f}^{\text{off-shell}} \sim \frac{g_i^2 g_f^2}{m_f}$$

$$\mu_{i \to H^* \to f} = \frac{\sigma_{i \to H^* \to f}}{\left(\sigma_{i \to H^* \to f}\right)_{\text{SM}}} \qquad \frac{\Gamma_H}{\Gamma_H^{\text{SM}}} = \frac{\mu_{\text{off}-\text{shell}}}{\mu_{\text{on}-\text{shell}}}$$

• **Profile likelihood ratio fit** with both a single
$$\mu_{off-shell}$$
 and splitting the two production modes.

• Combination with on-shell analysis to extract Γ_H thanks to the ratio of on-shell and off-shell productions.

$$\mu_{\text{off-shell}} = 0.3^{+0.9}_{-0.3} (1.0^{+2.3}_{-1.0})$$

$$\mu_{\text{off-shell}}^{\text{ggF}} = 0.2^{+1.3}_{-0.2} (1.0^{+2.5}_{-1.0}) \qquad \mu_{\text{off-shell}}^{\text{EW}} = 0.4^{+3.4}_{-0.4} (1.0^{+2.9}_{-1.0})$$

$$\Gamma_{H} = 0.9^{+3.4}_{-0.9} (4.1^{+8.3}_{-3.9}) \text{ MeV}$$

SATLAS $HH \rightarrow b\overline{b}\gamma\gamma$ Run 2 + partial Run 3 measurement

H

- Despite the reduced BR (0.26%) this is a golden channel for HH due to photon resolution (~2/3 GeV).
- First ATLAS analysis with >300 fb⁻¹ (140 fb⁻¹ at 13 TeV, Run 2 + 168 fb⁻¹ at 13.6 TeV, Run 3).
- New state-of-the-art transformer-based flavour tagging algorithm (GN2)+ kinematic fit.
- Selecting events with at least 2 b-jets and exactly 2 photons close to the Higgs mass.
- Events are classified in two regions, **high-mass** and **low-mass**, based on the **improved four-body** invariant mass $m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - \frac{1}{2}$ $(m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - \frac{1}{2})$
- Fitting the data in the sidebands.
- Simultaneous profile likelihood fit.
- Modelling signal with a **double**sided Crystal Ball function and the background with an exponential.

ATLAS-CONF-2025-005

SATLAS $HH \rightarrow b\overline{b}\gamma\gamma$ Run 2 + partial Run 3 measurement

Lucrezia Boccardo

SATLAS Conclusions

- The Higgs community in ATLAS is active and rich in innovative ideas.
- The increased statistics from Run 3 will lead to new and even more precise measurements.
- For an outlook on the future of Higgs measurements at the HL-LHC, take a look at the joint ATLAS+CMS input to the European Strategy for Particle Physics! <u>ATL-PHYS-PUB-2025-018</u>

A

Jniversità li **Genova**

SALLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ partial Run 3 differential measurement

- Cross-sections for jet multiplicity
- Pre-fit m_{34} distributions
- Example of neural network output in ggF 0-jets region

Università di **Genova**

SALLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ partial Run 3 differential measurement

	CP-even			CP-odd	Impact on		
Operator	Structure	Coeff.	Operator	Structure	Coeff.	production	decay
O_{HW}	$HH^{\dagger}W^{l}_{\mu u}W^{\mu u l}$	c_{HW}	$O_{H\widetilde{W}}$	$HH^{\dagger}\widetilde{W}^{l}_{\mu u}W^{\mu u l}$	$c_{H\widetilde{W}}$	VBF, VH	HZZ
O_{HB}	$HH^{\dagger}B_{\mu u}B^{\mu u}$	c_{HB}	$O_{H\widetilde{B}}$	$HH^\dagger \widetilde{B}_{\mu u}B^{\mu u}$	$c_{H\tilde{B}}$	VBF, VH	HZZ
O_{HWB}	$H H^{\dagger} \tau^{\dot{l}} W^l_{\mu u} B^{\mu u}$	c_{HWB}	$O_{H\widetilde{W}B}$	$H H^{\dagger} au^{\dot{l}} \widetilde{W}^{l}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$	VBF, VH	HZZ

- Additional SMEFT interpretation: constraints on the Wilson coefficients associated to vector-boson interactions in the Warsaw basis
- 95% CL observed lower limits on the scale of new physics Λ for three Wilson coefficient values (all other coefficients are assumed zero)
- Constraints are obtained comparing the measured signal cross-section in the **unfolded** m_{34} differential distribution

C_{HB} <u>ATLAS-CONF-2025-002</u>

9/6/25

SATLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ partial Run 3 differential measurement

- Likelihood contours in the (κ_f, κ_V) plane
- 2D exclusion contours for (C_{HB}, C_{HW}) and (C_{HWB}, C_{HW})

Università di **Genova**

Università di **Genova**

Università di **Genova**

	Event class							
Purpose	$N_{\rm jets}=0$	$N_{\rm jets} = 1$	$N_{\text{jets}} \ge 2$ ggF-enriched	$N_{\text{jets}} \ge 2$ VBF-enriched				
	Two isolated, different-flavour (same-flavour) leptons with opposite charge							
	$p_{\rm T}^{\ell_0} > 22 {\rm GeV}$ and $p_{\rm T}^{\ell_1} > 15 {\rm GeV}$							
Preselection	$m_{\ell\ell} > 10 \text{GeV} (12 \text{GeV})$							
	$(S_{\rm miss} > 4 \text{ and } p_{\rm T}^{\ell\ell} > 40 { m GeV}$							
	Different-fla	vour leptons	Different- or same-flavour leptons					
	$N_{b-\text{jets}} \left[p_{\mathrm{T}} > 20 \mathrm{GeV} \right] = 0$							
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$		$m_{\tau\tau} < m_Z - 25 \mathrm{GeV}$					
Background suppression	$\Delta \phi_{\ell\ell} <$	2.0 rad	$\Delta \phi_{\ell\ell} < 1.8 \mathrm{rad}$	-				
	$m_{\ell\ell} < m_{\ell}$	55 GeV	$m_{\ell\ell} < 55 \mathrm{GeV}$	$m_{\ell\ell} < 70 \mathrm{GeV}$				
	$\Delta R_{\ell\ell} > 0.6$							
			VH orthogonality	$m_{ii} > 350 \mathrm{GeV}$				
Signal topology	$\Delta \phi_{\ell\ell,\rm miss} > 1.5$ / rad	_	Fail CJV or Fail OLV	Pass CJV and Pass OLV				

Università di **Genova**

Università di **Genova**

VH, $H \rightarrow b\overline{b}/c\overline{c}$ Run 2 coupling measurement

Lucrezia Boccardo

SALLAS VH, $H \rightarrow bb/c\overline{c}$ Run 2 coupling measurement

- First observation of $WH, H \rightarrow b\overline{b}$. ٠
- Strongest observed limit of $VH, H \rightarrow c\bar{c}$.
- Cross section measurements in both the reduced and extended STXS scheme.

 μ^{bb}_{VH}

Coupling to charm quarks measured to be weaker than to bottom quarks.

 $VH, H \rightarrow c\bar{c}$ limit at 95% CL: 11.5(10.6) $|\kappa_c/\kappa_b|$ upper limit at 95% CL: 3.6(3.5) $|\kappa_c| < 4.2 (4.1)$

SATLAS VH, $H \rightarrow b\overline{b}/c\overline{c}$ Run 2 coupling measurement

Higgs candidate jet 1

- Tagging regions definitions based on flavour tagging working points
- (next slide) overview of all signal and control regions of the analysis

VH, $H \rightarrow b\overline{b}/c\overline{c}$ Run 2 coupling measurement

Flavour tagging												
. 1 tight a tag	2 iets	3 iets	> 4 iets	2 jets	3 jets	> 4 iets	2 iets	3 iets	> 4 jets			
> r tight c-tag Lepton flavour eµ	↓ Тор еµ СR	Тор	eµ CR	Top eµ CR	Торе	еµ СВ	Top eµ CR Top eµ CR					
	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets			
1 no tag	О			CR	CR		CR	CR				
1 loose c-tag (C∟N tag)	≓ CR	CR		CR	CR		CR	CR				
(- O,	ನ CR	CR CR		CR	CR CR		CR	CR				
	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets			
1 no c-tag	G			SR High ΔR CR	SR High ∆R CR		SR High ΔR CR	SR High ΔR CR				
1 tight c-tag	⇒ SR High ΔR CR	SR High ΔR CR		SR High ∆R CR	SR High ∆R CR		SR High ΔR CR	SR High ∆R CR				
(Of N tag)	R High ΔR CR	High	SR ΔR CR	SR High ∆R CR	S High 2	AR CR	SR High ∆R CR	S High Z	R AR CR			
1 loose c-tag	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets	2 jets	3 jets	≥ 4 jets			
1 tight c-tag	ы			SR High AR CR 1	SR High ∆R CR 1		SR High ∆R CR 1	SR High ∆R CR 1				
(CfCL tag) +	High ΔR CR 1	SR High ΔR CR 1		SR High ΔR CR 1	SR High ∆R CR 1		SR High ΔR CR 1	SR High ΔR CR 1		¹ Note: High ΔR CR split inte tight c-tag and 2 tight c-tag	o 1 loose c-tag + 1 regions	
2 tight c-tag (C⊤C⊤ tag)	High ΔR CR 1	High 2	SR AR CR 1	SR High ∆R CR 1	S High ∆	R CR 1	SR High ∆R CR 1	S High ∆	R CR 1	² Note: 4+jets in 2-lepton, =4 jets everywhere else		
	Common Top	CR										
1 tight c-tag	2 jets	Y 3 jets	4 jets	2 jets	3 jets	4 jets	2 jets	3 jets	4 jets			
1 b-tag	0			Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR			
(BC⊤ tag)	Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR				
	Resolved Hbb									Boosted Hbb		
	2 jets	3 jets	≥ 4 jets ²	2 jets	3 jets	≥ 4 jets ²	2 jets	3 jets	\geq 4 jets ²			
	Ь			SR	SR	SR	SR	SR	SR	J SR	SR	
2 b-tag				High ∆R CR	High ∆R CR	High ∆R CR	High ∆R CR	High ∆R CR	High ∆R CR	Top CR	Top CR	
(BB tag)		Low AR CR		Low AR CR	Low AR CR		Low AR CR	Low AR CR		SR	SR	
	High AR CR	High ∆R CR		High ∆R CR	High ∆R CR		High ∆R CR	High ∆R CR		Top CR	Top CR	
	¦ SR High ΔR CR	SR High ΔR CR	SR High ΔR CR	SR High ∆R CR	SR High ΔR CR	SR High ∆R CR	SR High ΔR CR	SR High ΔR CR	SR High ∆R CR	ਰ SR	SR	
75	GeV		150	GeV		250	i GeV		400	GeV 600	GeV p_T^V	

HIGG-2020-20

Università di **Genova**

VH, $H \rightarrow b\overline{b}/c\overline{c}$ Run 2 coupling measurement

• Comparison to most recent CMS results

MATLAS $HH \rightarrow b\overline{b}\gamma\gamma$ Run 2 + partial Run3 measurement

- Dijet invariant mass distributions
 - after pre-selection
 - after corrections

ATLAS-CONF-2025-005

MATLAS $HH \rightarrow b\overline{b}\gamma\gamma$ Run 2 + partial Run 3 measurement

• Likelihood contours for the two coupling constants

ATLAS-CONF-2025-005