Search for top-associated pseudoscalar production (tt a) in the $a \rightarrow b \overline{b}$ decay in dileptonic tt events

Based on ATLAS Paper HMBS-2024-46 (CERN-EP-2025-060)

CIPANP 2025

Sara Khaled — New York University in Abu Dhabi on the behalf of ATLAS collaboration

June -12 2025

Introduction

Motivation

The pseudoscalar **a** is predicted in many BSM models:

- Extended Higgs sectors e.g., Two-Higgs-Doublet Models (2HDM).
- a could mediate dark matter.

Decay and Experimental status

- Previously, ATLAS probed a light pseudoscalar $t\bar{t}a$ with $a \rightarrow \mu^+\mu^-$ decay mode.
- For $m_a < m_h^{SM}$, a \rightarrow b \bar{b} channel is expected to have a significant branching ratio (model dependent).

This Analysis

- First ATLAS search for *top-associated* pseudoscalar production $\bar{t}ta$ and tW a with a \rightarrow b \bar{b} decay
- Set limits on top-Yukawa g_t and on $\sigma \times BR$

JHEP05(2017)138

Below SM higgs mass, the a->bb dominates

Signal Model analysis strategy

Light pseudo-scalar a produced with $t\bar{t}$ or tW decaying via a-> $b\bar{b}$. The Yukawa Lagrangian for this channel :

$$\mathscr{L} = -\frac{g_t y_t}{\sqrt{2}} a \,\overline{t} \, i\gamma^5 t - \frac{g_b y_b}{\sqrt{2}} a \,\overline{b} \, i\gamma^5 b$$

B quark pair jets are reconstructed as large-R jet.

Boosted regime:

 $m_a = 12, 16, 20, 30$

 g_t is a model parameter for the top-a coupling

Feynman diagrams of the signal 2l and at least 3bjets in the final state

The main BGs are :tt+jets, ttW, ttH and ttZ

Good sensitivity for the full mass range

Resolved regime:

small-R jets

 $m_a = 30,40,60,80,100$

B quark pair are reconstructed as 2

Event selection

Trigger:

Single lepton Triggers combined in a logical OR.

Preselection:

- Two oppositely charged leptons (ee, $\mu\mu$, $e\mu$), one of them with $p_T > 27 GeV$ and satisfies trigger matching.
- $m_{ll} > 15 GeV$.

$$\bullet |m_{ll} - m_Z| > 8 GeV.$$

	Region	R = 1 jets	R = 0.4 jets	В	Ь	loose b	
Resolved	SR 0B4b	≥ 0	<u>≥ 4</u>	0	<u>></u> 4	-	
	SR 0B3b	\geq 0	≥ 3	0	3	-	
Boosted	SR 1B2b	\geq 1	≥ 2	1	≥ 2	-	
	SR 1B1b+1bL	\geq 1	≥ 2	1	1	≥ 1	Requiring only two tight tagged jets
	CR 0B2b+1bL	\geq 0	≥ 3	0	2	≥ 1 -	removes most of the a-> b b events
b = small-R tight DL1r, B = large-R DeXTer							\bigcirc \bigcirc

Feynman diagrams of a possible BG Mimicking the signal final state 000000

*also c-jets and light-jets

Data-driven corrections for $t\bar{t}$ MC simulation (mc reweighting)

Heavy flavour normalization

Improve the description of $t\bar{t}$ +HF jets

kinematic reweighting

Improve the transverse momenta of leptons and jets

Heavy flavor normalization

Kinematic reweighting

After HF normalization, In the MC events, every **extra jet** tends to push H_t **too high**, so data/MC drifts upward with jet multiplicity.

- Build Hyperbolic reweighting map in the (H_T , N_{jets}) plane to derive data driven corrections for $t\bar{t}$ +light/c +Wt MC samples.
- Goal: Cancels the per-jet HT offset

HF scaling fixes flavour; H_t reweighting flattens event 'hardness'—combined, they give a background model that agrees with data before the NN fit

Arb. units (normalised to 1) ATLAS vs = 13 TeV, 140 fb eµ 0B2b 6 зE 200 400 600 800 1000 1200 H_T [GeV] units (normalised to 1) ATLAS vs = 13 TeV, 140 fb 5 iets eu 0B2h 7 iets 8 iets 9 jets Arb. 200 400 600 800 1000 1200 H_T^{red} [GeV]

 $\mathbf{H}_{t} = \Sigma p_{t}(jets) + \Sigma p_{t}(leptons) + \Sigma E_{T}^{miss}$

The offset in H_T is mitigated in H_T^{red} (after correction) Reflecting the actual hardness of the event rather than the number of jets

Event Reconstruction(BDT)

Rank all possible jet–lepton and jet–jet combinations and pick the ones most likely to be a true $t\bar{t}$ or a-> $b\bar{b}$ decay

Signal/BG discrimination(NN)

sees the **right top quarks and (potential) pseudoscalar And does the signal and Background discrimination**

Two independent BDTs trained across all mass points:

tī

BDT Input:

- N_{jets} , N_{bjets}
- Lepton kinematics : η , p_T
- Jet kinematics: η , p_T , jet index, b-tag score
- lj, jj pairs kinematics: $\eta, p_T, m, \Delta R$

а

BDT Input:

- N_{jets} , N_{bjets} , sumPCBTag
- Jet kinematics: η , p_T , jet index, b-tag score

BDTs output: **BDT score** for lj, jj pairs and their kinematic variables

 \sim

Reconstructed mass of the highest-BDT-score ℓb-pair

Reconstructed mass of the highest-BDT-score jj-pair

Signal/BG Discrimination with NNs

<u>One NN is trained for each SR and for a</u> <u>specific mass point</u>

Input: BDT scores, reconstructed masses, event level

kinematics.

Output: score 0->1 (BG->signal)

Final maximum likelihood fit:

Run for every m_a hypothesis (12 – 100 GeV).

Inputs to the fit:

- 4 Signal Regions \rightarrow binned NN-score histograms
- 1 Control Region (eµ 0B2b1bL) \rightarrow sumPCBTag histogram

Free parameters:

1. Signal strength μ : scale on $\sigma(t \bar{t} a) \ge BR$

 $pred = \frac{BG}{BG + signal(fitted)}$

2. Background scale factors:

• $k(t\bar{t} + light, tW), k(t\bar{t} + \ge 1c), k(t\bar{t} + \ge 1b)$

Data/MC agreement at the high score tail

 $\sigma_{postfit}(m_a = 30 GeV) = 46 \pm 24$ fb

Results: Exclusion limits

- No significant excess observed in the whole mass Range.
- largest excess is at $m_a = 30 GeV : 2.0\sigma$.
- Red lines show the signal cross section for different values of g_t in the 2HDM_a model.
- Assume BR(a-> $b\bar{b}$)=100%.
- $g_t \ge 1$ excluded for all masses.
- $g_t \ge 0.5$ excluded from 50-80 GeV.

RECAP: Analysis strategy

Conclusions

- Dataset: full ATLAS Run-2 pp data at $\sqrt{s} = 13$ TeV (139 fb^{-1}).
- Target Process: $\bar{t}ta / tWa$, $a \rightarrow \bar{b}b$ in the di-leptonic channel.
- Mass range: m_a = 12-100 GeV, covering boosted (large-R B-jets) and Resolved (small-R b-jets) topologies.
- Results:
 - Assume BR(a-> $b\bar{b}$)=100%.
 - Exclude $50 < m_a < 80$ GeV for coupling $g_t = 0.5$.
 - Exclude all masses (12-100) GeV for $g_t = 1$.
- Significance: No significant excess , max local deviation 2.0 σ at $m_a = 30$ GeV.
- Impact: first ATLAS limits on t̄t a production with a → b̄b; complements earlier ATLAS searches that probed leptonic a decays.

Back up slides

List of uncertainties

- 12 GeV (boosted): Data statistics + large-R b-tag (DeXTer) drive the error.
- Heavy-flavour theory $-t\bar{t} + b$ sets the modelling floor, especially above 30 GeV.
- All other detector effects (pile-up, lepton, E^Tmiss, small-R DL1r) are **sub-percent**.
- 30 GeV: Systematics take over DeXTer (18 fb) and t t + b modelling (13 fb)

	$m_a = 12 \text{ GeV}$	$m_a = 30 \text{ GeV}$	$m_a = 80 \text{ GeV}$
Fitted cross section [fb]	$\hat{\sigma} = 9$	$\hat{\sigma} = 46$	$\hat{\sigma} = -6.1$
Uncertainty source	$\Delta \hat{\sigma}$	$\Delta \hat{\sigma}$	$\Delta \hat{\sigma}$
Data statistics	6.1	11.0	6.0
MC statistics	2.4	4.2	1.8
Luminosity & pile-up	0.1	0.4	0.1
Jet reconstruction	0.5	4.9	1.2
Lepton reconstruction	<0.1	<0.1	<0.1
$E_{\rm T}^{\rm miss}$ reconstruction	<0.1	0.3	<0.1
Track reconstruction	4.1	1.5	0.1
DL1r	0.4	3.5	1.4
DeXTer	4.2	18	1.1
Modelling signal	1.7	7.5	1.3
Modelling $t\bar{t} + b$	2.7	13	5.5
Modelling $t\bar{t} + c$	0.9	1.8	1.4
Modelling <i>tī</i> +light	0.8	2.0	2.2
Modelling tW	0.3	0.7	0.6
Modelling ttH	0.1	0.3	0.2
Modelling ttZ	0.1	0.2	1.0
Norm factors	0.7	6.7	4.7
Reweighting	<0.1	<0.1	<0.1
Total systematic uncertainty	8.0	22	7.8
Total uncertainty	10	24	9.7

COMPARISON WITH PREVIOUS ATLAS RESULT

Previous study

This study

ATLAS DETECTOR

Brief Overview:

- Inner Detector (ID): Tracking ($|\eta| < 2.5$), 2 T solenoid.
- Calorimeters: EM and Hadronic ($|\eta| < 4.9$).
- Muon Spectrometer (MS): Muon tracking (|η| < 2.7), toroidal magnets.
- Trigger System: L1 and HLT.

• Coordinate System: ATLAS uses a right-handed system. Pseudorapidity $\eta = -\ln \tan(\theta/2)$. Angular distance $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$.

Signal and Background samples

• Data:

- Full Run 2 pp collision data at $\sqrt{s} = 13$ TeV.
- Integrated Luminosity: $140.1(12) \, \text{fb}^{-1}$.
- Signal Simulation ($t\bar{t}a, tWa$ with $a \rightarrow b\bar{b}$):
 - MG5_aMC@NLO (NLO for $t\bar{t}a$, LO for tWa).
 - m_a points: 12, 16, 20, 25, 30, 40, 50, 60, 80, 100 GeV.

Background Simulation:

- Dominant: $t\bar{t} + jets$ (esp. $t\bar{t} + HF$ using PowhegBox).
- Others: Single top, $t\bar{t}H$, $t\bar{t}V$ (V = W, Z), V+jets, Diboson.
- Pileup simulation and reweighting applied. Geant4 (FS) and Fast Simulation (AF2).

Objects definition

Objects Overlap removal

• Electrons:

- $p_{
 m T} > 10\,{
 m GeV}, \ |\eta| < 2.47$ (excluding $1.37 < |\eta| < 1.52$).
- TightLH ID, PLVLoose PromptLeptonTagger.
- Impact parameters: $|z_0 \sin \theta| < 0.5 \text{ mm}, |d_0/\sigma(d_0)| < 5.$

• Muons:

- $p_{\mathrm{T}} > 10\,\mathrm{GeV}$, $|\eta| < 2.5$.
- Medium quality, PLVLoose PromptLeptonTagger.
- Impact parameters: $|d_0/\sigma(d_0)| < 3$, $|z_0 \sin \theta| < 0.5$ mm.
- Missing Transverse Momentum (E_{T}^{miss}):
 - momentum imbalance in the transverse plane calculated from selected objects + soft term from tracks.

- Standard Overlap Removal: e/μ , e/jet, μ/jet .
- Electron-jet overlap removal
 - Discard electrons that share a track with a muon.
 - Remove the closest small-R jet if ΔR(e, j)<0.2; otherwise, if the jet is within ΔR<0.4, discard the electron.
- Muon–jet overlap removal
 - Require $\Delta R(\mu, j) > 0.4$ from the nearest small-R jet.
 - If that jet has ≥3 tracks, keep the jet and discard the muon; otherwise, discard the jet (preserves efficiency for energetic muons).
- DeXTer Jet Handling:
 - Small-R jets eligible for DeXTer ($p_{\rm T} > 20 \, {\rm GeV}$, isolated in R = 0.8 reclustered jet).
 - If pass DeXTer Loose WP \rightarrow Large-R $B\text{-tagged jet, removed from small-R list.$
 - $\bullet \ \ \mathsf{Else} \to \mathsf{kept} \ \mathsf{as small-R} \ \mathsf{jet}.$
 - Large-R jet overlap with leptons ($\Delta R = 0.8$).

Jets definition

b-jets:

- jets originating from a single b-hadron.
- Anti- k_t algorithm, R=0.4.
- identified using DL1r tagger.
- μ in jet p_T correction is performed. (where the soft muons are lost during the overlap removal are added back to the four momentum).
- loose b-jet->85% DL1r WP
- tight b-jet: 70% WP

B-jets:

- boosted bb pair identified as one single object.
- Anti- k_t algorithm, R=0.4)
- identified using Dexter tagger.
- μ in jet p_T correction and DNN mass correction.

BDT and NN full inputs

BDT

Top quark/antiquark reconstruction BDT					
Object	Variables				
Full event	N _{jets} , N _{b-jets}				
$j\ell$ pair (test, aux.)	$m, p_{\mathrm{T}}, \eta, \Delta R$				
Lepton (test, aux.)	p_{T},η				
Jet (test, aux.)	$p_{\rm T}, \eta, b$ -tag score, jet index				
<i>tī</i> pair	$m, p_{\mathrm{T}}, \eta, \Delta R, \Delta \phi$				
<i>jj</i> pair	ΔR				

Pseudoscalar reconstruction BDT						
Object	Variables					
Full event	$N_{ m jets}, N_{b- m jets},$ sumPCBTag					
<i>jj</i> pair	$m, p_{\mathrm{T}}, \eta, E, \phi, \Delta R$					
Jet (1st, 2nd)	$p_{\rm T}, \eta, b$ -tag score, jet index					

Object	Variables
BDT $t \to j\ell$	Score, $p_{\rm T}^{j\ell}$, $\Delta R_{j\ell}$, $\Delta \eta_{j\ell}$, $\Delta \phi_{j\ell}$, jet ID
BDT $a \rightarrow jj$	Score, $p_{\rm T}^{jj}$, η_{jj} , m_{jj} , ΔR_{jj} , $\Delta \eta_{jj}$, $\Delta \phi_{jj}$, jet ID
Small-R jets	p_{T}, η, b -tagging score $p_{\mathrm{T}}^{bb}, m_{bb}, m_{bbb}, m_{bbbb}, \Delta R_{bb}, \Delta \eta_{bb}, \Delta \phi_{bb}, \Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}}, b}$
Large-R jets	p_{T},η $\Delta R_{Bb},\Delta\phi_{E_{\mathrm{T}}^{\mathrm{miss}},B}$
Leptons	$ \begin{array}{c} \Delta R_{\ell\ell}, \Delta \eta_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}},\ell} \\ \Delta R_{\ell\ell,bb}, \Delta R_{\ell\ell,B}, \Delta R_{\ell\ell,b} \end{array} $
Event	$N_{\rm jets}, H_{\rm T}^{\rm jets}, E_{\rm T}^{\rm miss}$

NN

JET MULTIPLICITY CORRECTIONS

- Heavy-flavour reweighting also fixes the **inclusive jet count** (N_{jets}) , previously mismodelled in $t\bar{t}$ MC.
- Apply the three normalisation factors from the table.
- Result: markedly improved data-MC agreement in sumPCBTag and $N_{\rm jets}$ distributions.

To reduce N_{jets} dependency when duping the kinematic re-weighting.

Not spoil the data/MC agreement achieved after HF corrections .

a reduced HT is introduced:

$$H_{\rm T}^{\rm red}(n) = H_{\rm T} - (n-3)\Delta H_{\rm T}(n),$$

List of systematics

Experimental uncertainties:

- Luminosity
- Pileup modeling
- **Leptons** (e,µ): Trigger, reconstruction, identification, isolation, Energy/momentum scale resolution
- Jets: Jet vertex tagging, jet energy scale and resolution, DL1r and dexter flavour tagging.
- Tracks:Track selection efficiency, AK8 track jet mass scale correction uncertainties.
 MET

Modelling uncertainties (sample-specific)

Systematic	Signal	tt+jets	tW	ttH	ttZ
$(\mu_{ m r},\mu_{ m f})$	1	1	1	1	1
FSR/ISR		1	1	1	
PDF+ α_s	1	1	PDF ME only	1	PDF ME only
Gen. alternative		pThard=1	MG_aMC@NLO	MG_aMC@NLO	Shorpa
PS alternative	Herwig7	Herwig7	Herwig7	Herwig7	Snerpa
DS alternative			✓ ✓		
RW uncertainties		1	1		

LHC workshop

Post-fit event yields in all signal and control regions for $m_a = 30 \text{ GeV}$

Sample	SR 0B4b	SR 0B3b	SR 1B2b	SR 1B1b+1bL	CR 0B2b+1bL
Signal 30	28±14	180±98	71±31	35±16	110±63
$t\overline{t}$ +light	5±2	1400 ± 320	130±24	$1100{\pm}180$	17000 ± 3000
$tar{t}+\geq 1c$	58±21	4700 ± 1200	380±140	740±230	12000 ± 3500
$tar{t}+\geq 1b$	1093 ± 47	9820±700	1758 ± 97	815±70	$5510{\pm}650$
tW	22±12	360 ± 140	46±20	64±17	830±220
tŦΗ	62±9	222 ± 22	31±4	$14{\pm}12$	136 ± 13
tτΖ	27±6	120 ± 22	15±3	11±2	128 ± 25
Other	14±2	394±35	47±4	78±10	$1060{\pm}120$
Total pred.	1300 ± 35	17000 ± 130	2500±50	2900±53	36000±190
Data	1301	17242	2479	2866	36350

Final fit : NNs post-fit scores for $m_a = 80$ GeV

Resolved

Boosted

$$\sigma_{postfit}(m_a=80GeV)=-\,6.1\pm9.7fb$$

pseudoscalar a

•2HDM:

Add a second Higgs doublet->after EWSB we get: h(SM-like), H(heavy even), A->a (CP-odd), H^{\pm} .

• Couplings:

Yukawa \propto **fermion mass**, a couples strongest to top and b-quarks.

• a-> $b\bar{b}$ highest BR.

•DM mediator : $\lambda \chi a \chi^{-} i \gamma 5 \chi$

Back ground processes mimicking the signal

a)*t* \bar{t} +jets same two real top quarks->identical di-lepton kinematics+ additional hard jet, or g-> $b\bar{b}$ fakes the a-> $b\bar{b}$ pair

b) Single-top tW

• Contains one real top and a W that often decays leptonically, giving the same $(\ell^+\ell^-, \ge 3 \text{ jets}, \ge 1 \text{ b-tag})$ topology.

• Mistagged light jets can supply the second "b" needed.

C) $t \bar{t} \mathbf{H} (\mathbf{H} \rightarrow \mathbf{b} \mathbf{b}^{-})$ • Two tops **plus** a true **b** $\bar{\mathbf{b}}$ resonance at ~125 GeV—the nearest SM look-alike to our a-> $b \bar{b}$

D) $t \bar{t} \mathbf{Z}(\mathbf{Z} \rightarrow \mathbf{b}\mathbf{b}^{-} \mathbf{or} \ell + \ell -)$

• Same top pair.

- If $Z \rightarrow b\bar{b} Z \rightarrow b\bar{b}$, gives extra b-jets;
 - •if $Z \rightarrow \ell \ell$ same dilepton kinematics.

This CR is a good CR, because it mirrors the signal topology Requiring only 2 tight b tagged jets, Remove most of a->bb events

More about NN

- Simultaneous binned ML fit in:
 - 4 SRs \rightarrow NN score (mass-parameterised).
 - 1 CR \rightarrow sumPCBTag.
- Parameter of interest: signal strength $\mu = \frac{\sigma_{\text{meas.}}}{\sigma_{\text{theo.}}}$.
- Free background normalisations:

 $k(t\bar{t} + \text{light}, tW), \ k(t\bar{t} + \geq 1c), \ k(t\bar{t} + \geq 1b)$

- **Likelihood**: product of Poisson terms over every histogram bin + priors for nuisance parameters (Gaussian, log-normal or Poisson).
- Fit result: maximise $\mathcal{L}(\mu, \theta)$ over μ and all nuisances θ .