

Measurement of the muon's anomalous spin precession frequency in the Fermilab Muon g-2 Experiment

Scott Israel CIPANP 2025, Madison, WI June 11th, 2025 In partnership with:

What is Fermilab Muon g-2 about?

- Measuring the muon's magnetic anomaly to <140 parts-per-billion precision!
- Magnetic moment: how strongly a particle reacts when placed in an external magnetic field
- Magnetic anomaly: a_{μ}
- Muon's magnetic anomaly tension between theory and experiment! Go measure!

New results! Fermilab Muon g-2 magnetic anomaly

Runs-4/5/6 result announced June 3rd, 2025, at Fermilab

- Excellent agreement with Runs-2/3 results
- Uncertainty further reduced met experimental uncertainty goal!
- $a_{\mu}(\text{Exp; Run 4,5,6}) = 0.001165920710(162)[139 \text{ ppb}]$

New results! Fermilab Muon g-2 magnetic anomaly

Runs-4/5/6 result announced June 3rd, 2025, at Fermilab

- Final combination with Runs-1/2/3
- Uncertainty further reduced exceeded experimental uncertainty goal!
- $a_{\mu}(\text{Exp; Run } 1-6) = 0.001165920705(148)[127 \text{ ppb}]$
- $a_{\mu}(\text{Exp; All}) = 0.001165920715(145)[124 \text{ ppb}]$

Via Sean Foster

Experimental principle

- Storing anti-polarized positive muons in a *magnetic storage ring* using electrostatic quadrupoles
 - Momentum *rotates* w.r.t. storage ring: ω_c
 - Spin *precesses* w.r.t. ring because g > 2: ω_s
- Difference in frequencies proportional to magnetic moment

$$\omega_{s} - \omega_{c} = \omega_{a} \propto \left(\frac{g-2}{2}\right) \frac{eB}{m} = \frac{a_{\mu}eB}{m}$$

We measure ω_{a} , B

Experimental principle

- Storing anti-polarized positive muons in a *magnetic storage ring* using electrostatic quadrupoles
 - Momentum *rotates* w.r.t. storage ring
 - Spin **precesses** w.r.t. ring because g > 2
- Difference in frequencies proportional to magnetic moment

$$\omega_{s} - \omega_{c} = \omega_{a} \propto \left(\frac{g-2}{2}\right) \frac{eB}{m} = \frac{a_{\mu}eB}{m}$$

We measure ω_{a} B

Via Reidar Hahn

Next talk by David Kessler

This talk!

Count your positrons! Not muons?

- We don't measure muons directly; measure decay positrons $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$
- Positrons travel inward towards inside wall of storage ring
- Let's put detectors there! Obvious choice, calorimeters!

Count your positrons! Not muons?

- We don't measure muons directly; measure decay positrons $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$
- Positrons travel inward towards inside wall of storage ring
 - $-r = \gamma m v / q B$ and $m_e = m_\mu / 200$
- Let's put detectors there! Obvious choice, calorimeters!

Reconstruction procedure

- 24 calorimeters: 6x9 grid of PbF2 crystals
- Decay positrons produce Cherenkov light
- Light collected by silicon photomultipliers
- Signal is **digitized** and then fitted with empirical **template functions**
- Extract **time** and **energy** from fit (*t*, *E*)

adc counts

Some collected data!

- 2D histogram of each recorded energy and its time
- g-2 oscillations visible!
- Muon decay visible!
- Extract precession frequency from time spectrum!

Histogram construction

- e⁺ energy spectrum; in weak decay, the number of highest energy e+s oscillates via parity violation!
- Muon spin rotates points towards and away from detectors! correlated to emission direction
- Maximize oscillation with energy threshold reduces statistical uncertainty on ω_a

Plot the Wiggle!

The decay positron time spectrum (the wiggle plot)

 $f(t) = N_0 e^{-\frac{t}{\tau_{\mu}}} (1 + A\cos(\boldsymbol{\omega_a} t - \boldsymbol{\phi}))$

- Basic 5-parameter fit
- Captures two physical processes
 - Muon decay
 - g-2 oscillation
- Are we done?

NO

Simple fit – only muon decay and g-2 oscillations accounted for, fit can be improved

FFT of residuals highlights unaccounted for beam dynamics

Full fit and multiple analyses

Beam

- 7 different and independent analysis groups
- Each group has its own fit function
- Each group was blinded with respect to one another
- Equal contribution from each group in final combination
- On right: Example of one group's fit function

 $N(t)e^{-t/\tau_{\mu}}(1+A(t)\cos(\omega_{a}t-\phi(t)))$ $f_{standard}(t) =$ Blinding $\omega_a =$ $2\pi \cdot 0.2291 \text{MHz}(1 + \mathbf{R} \times 10^{-6})$ $N(t) = \mathbf{N}_{\mathbf{0}} \cdot \Lambda(t) \cdot N_{cbo}(t) \cdot N_{2-cbo}(t) \cdot f_{u}(t)$ A(t) = $\mathbf{A} \cdot A_{cbo}(t)$ $\phi(t) =$ $\phi_0 + \phi_{cbo}(t)$ $\Lambda(t) = 1 - \left(\frac{\kappa_{loss}}{1 + \kappa_{loss}\epsilon}\right) \int_{t_1}^t dt' \ \bar{l}(t') e^{t'/\tau}$ Muon $\bar{l}(t) = \frac{l(t)}{e^{t_1/\tau} \int_{t_1}^{\infty} dt' l(t')}$ $\epsilon = \int_{t_-}^{t_1} dt' \bar{l}(t') e^{t'/\tau}$ Losses $\int_{t}^{t_1} dt' \bar{l}(t') e^{t'/\tau}$ $N_{cbo}(t) = 1 + \boldsymbol{A_{cbo-N}}E(t)\cos(\omega_{cbo}(t)t - \boldsymbol{\phi_{cbo-N}})$ $N_{2-cbo}(t) = 1 + \mathbf{A}_{2-cbo-N} e^{-2t/\tau_{cbo}} \cos(2\omega_{cbo}(t)t - \phi_{2-cbo-N})$ $\phi_{cbo}(t) = 1 + \mathbf{A}_{cbo-\phi} e^{-t/\tau_{cbo}} \cos(\omega_{cbo}(t)t - \phi_{cbo-\phi})$ **Dynamics** $A_{cbo}(t) = 1 + \mathbf{A}_{cbo-A} e^{-t/\tau_{cbo}} \cos(\omega_{cbo}(t)t - \phi_{cbo-A})$ $\omega_{cbo}(t) = \omega_{cbo} \left(1 + \frac{A_{cbo-drift}e^{-t/\tau_{cbo-drift}}}{\omega_{ref-freq}t} \right)$

How good is the fit?

Full fit – muon decay, g-2 oscillations, muon losses, beam dynamics accounted for

Much better residuals – no strong stand-outs for beam dynamics / unaccounted for physical effects

Account for additional effects?

Detector Gain Coherent Betatron motion

16 6/11/2025 Scott Israel | CIPANP 2025

Gain Corrections!

- Use a laser calibration system for gain monitoring and stability
- Four gain corrections required!
 - Short-term double pulse correction
 - Intermediate-term double pulse correction
 - In-fill gain correction
 - Out-of-fill gain correction: change in gain from change in temperature O(h)

Gain Corrections!

- Use a laser calibration system for gain monitoring and stability
- Four gain corrections required!
 - Short-term double pulse correction
 - Intermediate-term double pulse correction Bias $\omega_a!$
 - In-fill gain correction
 - Out-of-fill gain correction: change in gain from change in temperature - O(hours)

Short-Term Double Pulse Correction

- Change in gain from consecutive hits
- Scale: $\mathcal{O}(ns)$
- Sensitive to pileup
- Accounted for in reconstruction chain
- Send two laser pulses at SiPM
 - One sags the gain
 - Second probes size of gain
- Size: <2 ppb on ω_a

Intermediate-Term Double Pulse Correction

- Change in gain from hit rate
- Scale: *O*(μs)
- Applied as a histogram level correction immediately before the fitting stage, post-reconstruction
- Strongly contributes to a "slow effect", low frequency residual if not properly accounted for
- Size: 5-20 ppb on ω_a

Via Josh LaBounty

In-Fill Gain Correction

- Change in gain (gain sag) from the beam "flash"
- Scale: $\mathcal{O}(\mu s)$
- Accounted for in the reconstruction chain
- Send in-fill laser shots at the same time as the muon beam in some of the fills
 - Measure the laser energy detected by the SiPMs
- Size: <5 ppb on ω_a

Archnemesis: The Coherent Betatron Oscillations

- Observed signal due to radial betatron oscillations of the beam
- Dependence: <u>injection process</u>, <u>strength</u> and <u>phase</u> of the kicker pulse
- CBO frequency around 370 kHz (2.7 µs period) → decoheres after 200 µs on average
- <u>Affects e+ acceptance</u>
 - Acceptance vs R and azimuth to detector

$$\omega_{CBO} = \omega_C - \omega_x$$

Sample radial CBO at the cyclotron frequency; each detector is only at a single location around the storage ring

Beam oscillations modeling: Coherent Betatron Oscillations

- The center of the orbit precesses at betatron frequency ω_x
- Coherent movement of muon orbit
- Effect decoheres with time

 distribution of cyclotron
 frequencies among
 injected muons

Beam oscillations modeling: CBO

- The center of the orbit precesses at betatron frequency ω_x
- Coherent movement of muon orbit
- Effect decoheres with time

 distribution of cyclotron
 frequencies among
 injected muons

Beam oscillations modeling: CBO

- The center of the orbit precesses at betatron frequency ω_x
- Coherent movement of muon orbit
- Effect decoheres with time

 distribution of cyclotron
 frequencies among
 injected muons

CBO Visualized

Fermilab

- Affects the acceptance of the calorimeters!
- Calorimeters have finite transverse coverage finite acceptance
- Each detector can only sample muon beam at a particular phase of the cyclotron period

Handling the CBO?

• Expand the fit model!

 $N \text{ particles} \rightarrow N_0 \cdot N_{CBO}(t)$ $N_{CBO}(t) = 1 + (CBO \text{ envelope})A_{cbo} \cos(\omega_{cbo}(t)t - \phi_{cbo}(t))$

- Evaluate systematic uncertainties from fit model choices!
- Can't ignore CBO; ω_a differs by ~800 ppb! ~80 for Run 5 & 6

Total *ω_a* Uncertainties Runs-4/5/6

- Statistical uncertainty: 114.8 [ppb]
- Systematic uncertainty: 30 [ppb]
- Total uncertainty ω_a: 118.6 [ppb]
- Still statistics dominated!

Uncertainty on ω_a - Runs-4/5/6

Many other effects and parts of the analysis!

- Muon losses
- Pileup
- Corrections to ω_a
- Inputs from the tracker and other detectors
- Other storage ring components: kicker, inflector
- Systematic uncertainties

Thank you for listening!

The g-2 ring, photo taken by me (left), selfie taken by me (right)

Back to the beginning

- Fermilab accelerator complex produces
 - 1 batch = 4×10^{12} protons at 8 GeV/c
 - 1 bunch = 1×10^{12} protons at 8 GeV/c
- Every 1.4s (accelerator super cycle) 11.4 Hz rate w/ 16 bunches
 - Two sets of 8 bunches, each bunch 120 ns wide, 10 ms between each bunch, and 197 ms between first set of 8 bunches and the second set of 8 bunches
 - Corresponds to 11.4×10^{12} protons/s

Pion and muon production

- Inconel target:
 - $1 \times 10^{-5} \pi^+ / POT$
 - Produces 3.1 GeV/c beam, with 10% momentum spread
- Muon beam
 - Can extract 3.094 GeV/c muons from decay of pions
 - Not entirely pure; contains muons, pions, protons, positrons
 - Protons lag ~200 ns (higher mass) and are ejected out of beam
 - Pions are circulated until decay
 - **Positrons** lost via synchrotron radiation within 4 μs after beam injection
 - Muon beam is ~95% polarized

Fermilab Accelerator Complex

Muon beam injection

- Beam state at injection
 - 3.094 GeV/c with 2% momentum spread, about 120ns wide
 - Injection efficiency $\sim 2 \times 10^{-7} \mu/POT$
 - Observed for $700 \ \mu s$ post injection
- Stored muons have max beam radius of $45\pm0.5\%$ mm (inner radius of collimators), orbit radius of ~ 7.112m
- 1 bunch corresponds to 1 fill
 - 1 fill typically contains ${\cal O}(10^4)$ muons when in the storage ring
 - Corresponds to <u>~500 detected positrons</u>; has decreased to <u>~350 detected</u> positrons in later runs

In the ring

- Injected muons
- Boost factor $\gamma = 29.3$
- Boosted lifetime $64.44 \ \mu s$
- Average 400 rotations around the ring before decay
- Storage ring average magnetic field B = 1.451 T

Beam Dynamics

Muon Beam Frequencies					
Name	Symbol	Expression	Frequency [MHz]	Frequency $[rad/\mu s]$	Period [ns]
g-2	f_a	$a_{\mu}Be/2\pi mc$	0.229	1.439	4365
cyclotron	f_c	$v/2\pi R_0$	6.702	42.113	149.2
horizontal betatron	f_{xBO}	$\sqrt{1-n}f_c$	6.330	39.772	158.0
vertical betatron	f_{yBO}	$\sqrt{n}f_c$	2.203	13.845	453.8
coherent betatron	\tilde{f}_{cbo}	$f_c - f_{xBO}$	0.373	2.341	2684
vertical waist	f_{VW}	$f_c - 2f_{yBO}$	2.295	14.423	436.6

Betatron Oscillations: Radial Case with

Quadisd keep beam out longer at high/low radii which distorts motion:

Betatron Oscillations: Radial Case with

Quadisd keep beam out longer at high/low radii which distorts motion:

Betatron Oscillations: Radial Case with

Quadisd keep beam out longer at high/low radii which distorts motion:

