# QGP Speed of Sound measurements at the LHC

Milan Stojanovic

Wayne State University

CIPANP 2025, Madison, WI, USA



# Speed of sound – a probe of EoS

### Equation of State (EoS) of nuclear matter – Main goal of nuclear physics!



0.24

0.22

0.2

0.18

### How to measure it?

### Lattice QCD calculations

- $\circ$  (2+1)-flavor
- $\circ\,$  Deconfined medium



Bayesian analysis – significant overlap between constrained and predicted  $c_s^2$ !





### Can we measure it directly?

Milan Stojanovic, CIPANP 2025

### **Early attempts**

Volume 118B, number 1, 2, 3

PHYSICS LETTERS

#### MULTIPLICITY DEPENDENCE OF $p_t$ SPECTRUM AS A POSSIBLE SIGNAL FOR A PHASE TRANSITION IN HADRONIC COLLISIONS

L. VAN HOVE CERN, Geneva, Switzerland

Received 25 August 1982

□ Multiplicity – directly proportional to the entropy

□ Temperature – 1/3 of energy per particle for massless ideal gas ⇒  $T = \langle p_T \rangle / 3$  in ultra-relativistic collisions at midrapidity

#### Ideas go back to 80s

 $\circ$  proposed  $\langle p_{\rm T} \rangle$  vs  $dN_{ch}/dy$  to search for phase transition

# New approach

- In HI experiment thermodynamic relations do not apply directly:
- Longitudinal expansion
- Limited acceptance

Idea: a hypothetical system at the end of hydro evolution of the collision with entropy S and energy E

- $\circ$  An uniform fluid at rest with an effective volume ( $V_{eff}$ ) and temperature ( $T_{eff}$ )
- In this "effective system" E and S are conserved!

### Method 1

```
For the same centrality (same V_{eff}):
```

 $\circ \langle p_{\rm T} \rangle$  vs  $N_{ch}$  at different (close) collision energies

$$c_s^2 = \frac{dP}{d\varepsilon} = \frac{sdT}{Tds} \bigg|_{T_{eff}} = \frac{d\ln T}{d\ln S} \bigg|_{T_{eff}} = \frac{d\ln\langle p_{\rm T}\rangle}{d\ln N_{ch}}$$

Nature Physics 16 (2020) 615

# **First Direct Constraint**



For the same centrality (same  $V_{eff}$ ):

Ο

Ο

Ο

**Method 1** 

 $\circ \langle p_{\rm T} \rangle$  vs  $N_{ch}$  at different (close) collision energies

Nature Physics 16 (2020) 615

# **Another method**



### Method 2

For the same same energy:  $\circ \langle p_{\rm T} \rangle$  vs  $N_{ch}$  at different UCC centralities  $\rightarrow$  same  $V_{eff}$ 



Centrality percentile:

 $\succ$  fraction of events based on  $\Sigma E_T$  distribution

Proposed by: PLB 809 (2020) 135749

# **Another method**



### Method 2

For the same same energy:  $\circ \langle p_{\rm T} \rangle \text{ vs } N_{ch}$  at different UCC centralities  $\longrightarrow \text{ same } V_{eff}$ 



Entropy density (s), # of charged particles ( $N_{ch}$ )

### Nontrivial prediction by hydrodynamics direct constraints on the equation of state

Proposed by: PLB 809 (2020) 135749

# **CMS** measurement

Method 2

- Significant increase of  $\langle p_{\rm T} \rangle$  toward UCC events
- $\,\circ\,$  as predicted by the simulations

 $\circ~$  dip before the rise

 $c_s^2$  extracted from fit

• Region  $N_{\rm ch}/N_{\rm ch}^0 > 1.12$ 



# **CMS Measurement**

Method 2

Good agreement with Lattice QCD calculations

- $\circ$  Deconfined phase
- $\circ \mu_{
  m B} = 0$  and (2+1)-flavors

Significantly higher precision compared to the previous result

Rep. Prog. Phys. 87, 077801 (2024)





### **ALICE** study of potential centrality bias

#### ALICE-PUBLIC-2024-002

|                                    | Observable                    | Label                  | Centrality estimation                                                                                             | $\langle p_{ m T}  angle$ and $\langle { m d} N_{ m ch}/{ m d} oldsymbol{\eta}  angle$                                     | Minimum $ \Delta \eta $ |
|------------------------------------|-------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Different<br>centrality estimators | N <sub>ch</sub> in TPC        | I<br>II                | $ert oldsymbol{\eta} ert \leq 0.8 \ 0.5 \leq ert oldsymbol{\eta} ert < 0.8$                                       | $ert \eta ert \leq 0.8 \ ert \eta ert \leq 0.3$                                                                            | 0<br>0.2                |
|                                    | $E_{\rm T}$ in TPC            | III<br>IV              | $ert oldsymbol{\eta} ert \leq 0.8 \ 0.5 \leq ert oldsymbol{\eta} ert < 0.8$                                       | $ert \eta ert \leq 0.8 \ ert \eta ert \leq 0.3$                                                                            | 0<br>0.2                |
|                                    | N <sub>tracklets</sub> in SPD | V<br>VI<br>VII<br>VIII | $egin{aligned} & \eta  \leq 0.8 \ 0.5 \leq  \eta  < 0.8 \ 0.3 <  \eta  < 0.6 \ 0.7 \leq  \eta  < 1 \end{aligned}$ | $egin{aligned}  \eta  &\leq 0.8 \  \eta  &\leq 0.3 \  \eta  &\leq 0.3 \  \eta  &\leq 0.3 \  \eta  &\leq 0.3 \end{aligned}$ | 0<br>0.2<br>0<br>0.4    |
|                                    | $N_{\rm ch}$ in V0            | IX                     | $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$                                                                       | $ oldsymbol{\eta}  \leq 0.8$                                                                                               | 0.9                     |





**ALICE** study of potential centrality bias

### **Selection biases**

- $\circ$  different  $\langle p_{\rm T} \rangle$  vs d $N_{\rm ch}/d\eta$  for different selections
- $\circ c_s^2$  depends on the centrality definition

ALICE-PUBLIC-2024-002





**CMS** study of potential centrality bias

### Slope does NOT depend on centrality

estimators:

- $\succ$  at high  $N_{ch}$  &
- > if there is **significant**  $\eta$  **separations** from POI



# What else can we learn from <pT> vs Nch

Slightly different observable Nch - <[pT] > correlations

Sensitive to the speed of sound

○  $c_s^2 = 0.23$  at  $T_{eff} = 0.22$  GeV used as input to MUSIC > Value consistent with measurements

Hydro calculations consistent with data

No significant difference between PbPb & XeXe



PRL 133 (2024) 252301

Can one use the same observable ( $\langle p_T \rangle$  vs  $dN_{ch}$ ) to probe thermodynamics in small systems?



PRC 109 (2024) 014904

Mu et. al.: arXiv:2501.02777

#### **Limitations/Complications**

- Quantum fluctuations tend to reduce the extracted  $c_s^2$ 

$$\frac{\Delta_p}{\langle p_T \rangle_0} = c_s^2 \frac{\Delta_N + \delta}{N_0}$$

esp. for smaller systems

 T<sub>eff</sub> not well defined for nonboost invariant system

> $\langle p_T 
> angle pprox 2.22 \sim 2.8 \, T_{
> m eff}$  for 5.02 TeV  $\langle p_T 
> angle pprox 2.16 \sim 2.58 \, T_{
> m eff}$  for 8.16 TeV





### Method 1

For the same centrality (same  $V_{eff}$ ):  $\circ \langle p_T \rangle$  vs  $N_{ch}$  at different (close) collision energies



Assuming boost invariant medium  $T_{eff} = \langle p_{\rm T} \rangle / 3$ 

#### Trajectum systematically below data

HIJING unable to describe data



Assuming non-boost invariant medium  $T_{eff} = \langle p_{\rm T} \rangle / 3$   $T_{eff} = \langle p_{\rm T} \rangle / 2.45$ 

Trajectum systematically below data

HIJING unable to describe data

# Summary

# First direct measurements of speed of sound in QGP

• Using 
$$c_s^2 = \frac{dP}{d\varepsilon} = \frac{d\ln\langle p_T \rangle}{d\ln N_{ch}}$$

- $\circ~$  Good agreement with Lattice QCD for deconfined medium  $~_{\rm o}$
- A critical choice of centrality estimator

 $\frac{d \ln \langle p_{\rm T} \rangle}{d \ln N_{ch}}$  – way to probe hydrodynamics in small systems

Models fail to describe data



# **Open Questions and Future Work**

- Validity of the thermodynamic assumptions
  - Discussed more in: arXiv:2407.05570 and arXiv:2503.20765

 $\circ~$  Further investigation on the effects from centrality estimator

• Effect of initial density fluctuations

 $\circ$  Look for the rise of  $\langle p_{\rm T} \rangle$  vs  $N_{ch}$  in different systems

• Scan of  $c_s$  at different energies