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Gluon saturation

At high energies proton/nucleus becomes densely packed with gluons

Proton/Nucleus

When gluon densities become large enough to “saturate” the proton/nucleus, we call it

gluon saturation

Figure from https://www.bnl.gov/eic/science.php 1



Gluon saturation

At high energies proton/nucleus becomes densely packed with gluons

Proton/Nucleus

Saturation can help us understand high energy processes, heavy ion collisions, spin puzzle

etc...

Figure from https://www.bnl.gov/eic/science.php
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Structure of proton
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One-dimensional structure of proton

x is between 0 and 1
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Three dimensional structure of proton

b is the transverse size (in X-Y plane)
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Structure at high energies

Boosted along the Z -direction

Lorentz contraction: becomes pancake like

L.McClerran (2008), A.Kovner(2005)
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Structure at high energies

Boosted along the Z -direction

What happens if we boost it further?
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Gluon radiation

P P + dP

L.McClerran (2008), A.Kovner(2005)
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Gluon radiation

• Boosting a color charge gives rise to new gluons

• “Virtual” gluons survive longer due to time dilation

L.McClerran (2008), A.Kovner(2005)
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Gluon radiation

P P + dP

• New gluons (or quarks) have smaller momentum fraction x

• New gluons have the same transverse size b

L.McClerran (2008), A.Kovner(2005)
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What is gluon saturation?

• Size of the proton varies very slowly with energy

• Number of gluons increases much faster

Gluons with the same b start overlapping

L.McClerran (2008), A.Kovner(2005)
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What is gluon saturation?

Competing process: Recombination

Gluon splitting
Gluon recombination

Gluon saturation: splitting rate = recombination rate

L.McClerran (2008), A.Kovner(2005)
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Saturation momentum

Gluons with different b saturate at different momentum

b1 gluons saturated b1 and b2 gluons saturated

Gluons with larger b or smaller momenta saturate first

L.McClerran (2008), A.Kovner(2005)
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Saturation momentum

Saturation momentum: Qs(P )

b1 gluons saturated b1 and b2 gluons saturated

All gluons with typical momenta less that Qs(P ) are saturated

L.McClerran (2008), A.Kovner(2005)
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In nucleus

• Area of nucleus ∝ A2/3

• Number of gluons ∝ A

(Qs(P ))
2
∝

Number of gluons

Area of nucleus
∝ A1/3

Nuclear modes saturate faster than proton modes

L.McClerran (2008), A.Kovner(2005)
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How to understand saturation?

Saturation implies multiple interactions

• Interaction with multiple quarks/gluons

• Each interaction is weak but large in number

Probes a dense but perturbative regime of QCD. Dense implies classical !

L.McClerran (2008), A.Kovner(2005)
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How to understand saturation?

Multiple interactions are summed!

Color ≡ Degrees of freedom

Glass ≡ Freezing of gluons

Condensate ≡ High density

CGC formalism uses multiple scattering and saturation to study physical processes

L.McClerran (2008), A.Kovner(2005)
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But how to see saturation?

Need to compare with experiments at HERA, RHIC, LHC and EIC in future!

Three directions

• Understand applicability of CGC formalism

• Compute processes at high accuracy using CGC formalism

• Compare robust observables with data to see signals of saturation
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Applicablity of CGC formalism

Schemes

• Large-x/collinear methods

Get Large-x evolution

• Small-x/CGC methods

Get Small-x evolution

How do you connect the two regimes/evolutions?

New scheme with validity for all x is needed

TMD handbook

A.Kovner(2005)

S.Mukheree, V.Skokov, A.Tarasov, S.T (2024,2025)

H.Duan,A.Kovner,M.Lublinsky(2024)
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MSTT scheme

MSTT factorization is based on the background field method

gluon transverse distribution function(x, b) operator

Quantum corrections

Transverse distribution function(x, b,Λ) valid for all x

Small-x limit

Small-x methods/CGC

Large-x limit

Large-x methods/CSS

S.Mukheree, V.Skokov, A.Tarasov, S.T (2024,2025)
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Full result

The full result contains parts of Large-x and parts of Small-x
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S.Mukheree, V.Skokov, A.Tarasov, S.T (2024,2025)
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Evolution at high energies

Small-x evolution or JIMWLK

Given an initial condition evolve by

implementing a random walk (langevin

equation)

Y.Kovchegov, H.Weigert(2013), I.Balitsky, G.Chirilli (2013)

Y.Hatta, E.Iancu (2016)
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Evolution at high energies

Small-x evolution or JIMWLK

• Not all observables can be evolved

• Computationally expensive

• Method does not work at higher orders

Y.Kovchegov, H.Weigert(2013), I.Balitsky, G.Chirilli (2013)

Y.Hatta, E.Iancu (2016)
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Evolution at high energies

JIMWLK using quantum computers

• Using open quantum system methods

• Using lattice gauge theory methods

Quantum mechanical system with a few points. Early stages!

A.Agrawal, E.Budd, A. Kemper, V.Skokov, A.Tarasov, S.T (to appear)
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Process I

Electron - proton scattering

• Quantum corrections to photon

• Quantum corrections to

proton/nucleus

Balitsky,Chirilli(2008,2015)

Beuf,Lappi,Paatelainen(2021,2022)

Kovchegov,Weigert(2007)
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Process I

Electron - proton scattering

• Measure outgoing hadron

• Proton survives

• Ultraperipheral collisons ...

Beuf,Lappi,Mantysaari,Paatalainen,Penttala (2024)

Boussarie,Grabovsky,Ivanov,Szymanowski,Wallon (2016)

Mantysaari, Penttala (2021,2022)

Roy, Venugopalan (2019)

Caucal,Salazar,Schenke,Stebel, Venugopalan (2024)
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Process II

Proton- Nucleus collisons

• Proton: Not saturated

• Nulceus: Saturated

Chirilli,Xiao,Yuan (2012)

Mantysaari, Tawabutr (2023)

Liu,Xie,Kang,Liu (2022)

Taels (2023)
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Fits to Deep inelastic scattering

Geometric scaling at high energy: Function of τ = Q2
/Q2

s

Stasto,Golec-Biernat,Kwiecinski (2000)

Iancu,Itakura,McLerran (2002)
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Fits to Deep inelastic scattering

Beuf,Lappi,Hanninen,Mantysaari (2020)
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Fits to Deep inelastic scattering

At EIC

• Fits with nucleus

• Better luminosity

• Polarized scattering

Beuf,Lappi,Hanninen,Mantysaari (2020)
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Proton-nucleus scattering

Suppression is a good

signal for saturation

Higher order effects need to be included

Dihadron correlations

Evidence for Nonlinear Gluon Effects in QCD and their A Dependence at STAR(2022)
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Other observables

• Exclusive vector meson production

• Mantysaari, Schenke (2016.2018)

• Mantysaari, Salazar, Schenke (2022,2024)

• Penttala, Royon (2024)

• Kesler, Ikbal Sheikh, Ma, Tu, Ullrich, Xu (2025)

• Energy - energy correlators

• Liu,Pan,Yuan, Zhu (2023)

• Kang, Penttala, Zhao, Zhu (2024)

• Spin-dependent observables

• Kovchegov,Sievert,Pitonyak (2012 - present)
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Heavy ion collisons

Nucleus Quark gluon plasma Nucleus

Busza,Rajagopal,Schee(2018), Mclerran (2008), Schenke (2021)
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Heavy ion collisons

Nucleus Quark gluon plasma Nucleus

Initial condition for QGP: Saturated nucleus

Busza,Rajagopal,Schee(2018), Mclerran (2008), Schenke (2021)
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Heavy ion collisons

Saturation based models make predictions for future experiments!

Giacalone, Schenke, Shen (2020)
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Summary

• Search for gluon saturation is an ongoing theoretical and experimental (EIC/foCAL)

effort

• Theoretical calculations need to be upgraded to higher orders

• Understand/construct observables which can provide clear signals of saturation

• Make robust predictions for high energy observables, spin and heavy ion collisons

For more information please look at the recently concluded CFNS-INT workshop on small-x
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