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A Vast Range of Dark Matter Candidates
Particle Masses

“WIMPs” “Exotics’’“Fuzzy DM”

Fits in Galaxy
Elementary

 Particle

nDM λdB3 >> 1 nDM λdB3 << 1 “Black  
Holes”!
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Phenomenology controlled by deBroglie λ 

at the Sun’s location:  

Wave-like! Particle-like!

ULDM

DD experiments assume a “Standard Halo Model”
Here we probe the non-luminous matter distribution in the 
inner solar system directly! 

Cosmic small-scale structure not known! [Bechtol et al., arXiv:2203.07354] 

Non-steady-state effects exist! [Widrow, SG, Yanny, Dodelson, & Chen, 2012; 
Yanny & SG, 2013…; SG, Hinkel, Yanny, 2020]
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Solar System Constraints on Dark Matter
From planetary ephemerides  

The Kepler problem has a conserved vector (A): 

its orbits close

[Pitaev & Pitaeva, Astro. Lett. 2013; using EPM2011] 

MDM enclosed
Saturn

< 1.7 × 10−10 M⊙

Broken by GR, background forces, to 

ensure that the planetary perihelia precess

677,000 observations of planets & spacecraft: 

(67% CL)

[N.B. Cassini, 2004]strongest:

What else? Thermal heating of planets (str. int. DM),…?
[Mack, Beacom, Bertone, 2007 ; Adler, 2008, 2009; Leane & Smirnov, 2023] 

 from Earth9.5 AU

[Pitjeva & Pitjeva, 2013]



4

Our Sun

[October, 2014 Credit: NASA/SDO]

Sunspots known since ancient times 

Galileo (1610) inferred the Sun rotates

Thus the Sun should become 

slightly oblate (  )∼ 𝒪(10−7)

And , the gravitational 

quadrupole moment, is nonzero

J2

    (Note  inferred!)M⊙ ≃ 2 × 1030 kg GM⊙

R⊙ ≃ 6.96 × 105 km = 4.65 × 10−3 AU

 w.r.t.  to orbital planeτspin ∼ 27 days ; tilt ∼ 7.25∘ ⊥
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 , the Gravitational Quadrupole Moment
J2
can be determined in different ways

• Direct measurements of the visual oblateness 

[Very challenging!]


• Measurements of the pattern of trapped acoustic 
waves that distort the observed surface of the Sun 

[This is helioseismology — here different solar 
models are employed] 


• Measurements of Mercury’s perihelion precession 
[Here we assume Einstein’s GR                                    

is the theory of gravity]

 There are light & dark assays

N.B. sees all mass within its orbit
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Patterns of Gravitational Quadrupole Moments


 JOrb
2 < JOpt

2 , JHeli
2

 JOrb
2 > JOpt

2 , JHeli
2

To probe the distribution of “extra” matter  

If the extra matter is spherically distributed

If the extra matter is in the orbital plane

δJ2 ≡ JOrb
2 |β=1 η=0 − JHeli

2

Thus we consider                                     

to probe for non-luminous (and dark) matter

Intrinsic to SunExtrinsic

JHeli
2 , JOrb

2 in the GR limit, i.e.,                                     



7

The Gravitational Quadrupole Moment

From orbital measurements

The parametrized Post-Newtonian (PPN) provides a 
model-independent framework in which to test GR

[Nordtvedt, 1968; Will & Nordtvedt, 1972] 

For a planet in a bound orbit in the equatorial plane:





  

r =
(1 − e2)a

1 + e cos[(1 − δϕ0/2π)ϕ]

δϕ0 =
2 − β + 2γ

3
⋅

6πM⊙

a(1 − e2)
+ J2

3πR2
⊙

a2(1 − e2)2

[MTW, 1973, e.g.] 

perihelion shift
;  in GRβ = γ = 1 η = 4β − γ − 3 = 0

Cassini:  γ − 1 = (2.1 ± 2.3) × 10−5 [Bertotti et al., 2003] 
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The Gravitational Quadrupole Moment

From MESSENGER (mission to Mercury) 

12

Helioseismological J2 measurements

# J2(⇥10�7) ±J2(⇥10�7) Reference Solar Model

1 36 – Gough [128] [129, 130]
2 1.7 0.4 Duvall [131] [129, 130]
3 55 13 Hill [132] a –b

4 2.23 0.09 Pijpers [33] [133]
5 2.22 0.02 Armstrong [134] [135]
6 1.6 0.04 Godier [136, 137]c [138]
7 2.201 – Mecheri [23] [95]d

8 2.198 – Mecheri [23] [95]
9 2.220 0.009 Antia [103]e

10 2.204 – Mecheri [94] [100]
11 2.208 – Mecheri [94] [101]
12 2.206 – Roxburgh [139] [133]
13 2.208 – Roxburgh [139] [140]
14 2.14 0.09 Pijpers [33] [133]
15 2.18 – Antia [141]
16 2.180 0.005 Antia [103]e

17 2.211 – Mecheri [94] [100]
18 2.216 – Mecheri [94] [101]

a This is the corrected value after accounting for a missing numer-
ical factor [4].

b Solar model by Saio, H. (1982), private communication [132].
c The uncertainty is reported in [142].
d Measurements 7 and 8 use Model (a) and (b) for the solar dif-

ferential rotation from [95], respectively.
e The central value and error come from the time average of J2

measurements over 10 years.

TABLE III. Summary of helioseismological J2 measurements.
Measurements #1–3 use the rotational splitting data from [143],
#4–11 use data from SoHO/MDI [98, 144], #12–13 use data
from SoHO/MDI and the ground-based Global Oscillation Network
Group (GONG) [145], #14–16 use data from GONG, and #17–18
use data from SDO/HMI [99].

Orbital J2 measurements

# J2(⇥10�7) ±J2(⇥10�7) Reference

1 2.25 0.09 Park ,11–14 [28]
2 2.246 0.022 Genova, 08–15 [29]
3 2.165 0.12 Fienga, - [146]
4 2.206 0.03 Fienga, - [146]

TABLE IV. Summary of orbital J2 measurements. Mea-
surements #1 and #2 are orbital assessments using data
almost exclusively from measurements of Mercury’s or-
bit. We also include the ephemerides analyses that have
taken into account the ELT e↵ect and fit for J2 together
with PPN parameters.

mozov, D. Franco, C. Galbiati, C. Ghiano, M. Giammarchi,
A. Goretti, A. S. Göttel, M. Gromov, D. Gu↵anti, A. Ianni,
A. Ianni, A. Jany, D. Jeschke, V. Kobychev, G. Korga, S. Ku-
maran, M. Laubenstein, E. Litvinovich, P. Lombardi, I. Lom-
skaya, L. Ludhova, G. Lukyanchenko, L. Lukyanchenko,
I. Machulin, J. Martyn, E. Meroni, M. Meyer, L. Miramonti,
M. Misiaszek, V. Muratova, B. Neumair, M. Nieslony, R. Nug-
manov, L. Oberauer, V. Orekhov, F. Ortica, M. Pallavicini,
L. Papp, L. Pelicci, Ö. Penek, L. Pietrofaccia, N. Pilipenko,
A. Pocar, G. Raikov, M. T. Ranalli, G. Ranucci, A. Razeto,
A. Re, M. Redchuk, A. Romani, N. Rossi, S. Schönert, D. Se-
menov, G. Settanta, M. Skorokhvatov, A. Singhal, O. Smirnov,
A. Sotnikov, Y. Suvorov, R. Tartaglia, G. Testera, J. Thurn,
E. Unzhakov, F. L. Villante, A. Vishneva, R. B. Vogelaar,
F. von Feilitzsch, M. Wojcik, M. Wurm, S. Zavatarelli, K. Zu-
ber, and G. Zuzel, Experimental evidence of neutrinos pro-
duced in the CNO fusion cycle in the Sun, Nature 587, 577
(2020), arXiv:2006.15115 [hep-ex].

[8] S. Appel, Z. Bagdasarian, D. Basilico, G. Bellini, J. Benziger,
R. Biondi, B. Caccianiga, F. Calaprice, A. Caminata, P. Cav-
alcante, A. Chepurnov, D. D’Angelo, A. Derbin, A. Di Gi-
acinto, V. Di Marcello, X. F. Ding, A. Di Ludovico, L. Di
Noto, I. Drachnev, D. Franco, C. Galbiati, C. Ghiano, M. Gi-
ammarchi, A. Goretti, A. S. Göttel, M. Gromov, D. Gu↵anti,
A. Ianni, A. Ianni, A. Jany, V. Kobychev, G. Korga, S. Ku-
maran, M. Laubenstein, E. Litvinovich, P. Lombardi, I. Lom-
skaya, L. Ludhova, G. Lukyanchenko, I. Machulin, J. Martyn,
E. Meroni, L. Miramonti, M. Misiaszek, V. Muratova, R. Nug-
manov, L. Oberauer, V. Orekhov, F. Ortica, M. Pallavicini,
L. Papp, L. Pelicci, Ö. Penek, L. Pietrofaccia, N. Pilipenko,
A. Pocar, G. Raikov, M. T. Ranalli, G. Ranucci, A. Razeto,
A. Re, M. Redchuk, N. Rossi, S. Schönert, D. Semenov,
G. Settanta, M. Skorokhvatov, A. Singhal, O. Smirnov, A. Sot-
nikov, R. Tartaglia, G. Testera, E. Unzhakov, F. L. Villante,
A. Vishneva, R. B. Vogelaar, F. von Feilitzsch, M. Wojcik,
M. Wurm, S. Zavatarelli, K. Zuber, G. Zuzel, and Borex-
ino Collaboration, Improved Measurement of Solar Neutrinos

Fits to  and  are strongly correlated, yieldingβ J2
[Genova et al., 2018] 

JOrb
2 = (2.246 ± 0.022) × 10−7 ; JOrb

2 |β=1;η=0 = (2.2709 ± 0.0044) × 10−7

Fits that include the Einstein-Lense-Thirring (ELT)

and the PPN parameters  are β, γ

MESSENGER (Mercury)
Planetary ephemerides  

JOrb
2 |β=γ=1 = (2.28 ± 0.06) × 10−7
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The Gravitational Quadrupole Moment

From helioseismology

— space-based or global network (GONG) —

SoHO/MDI
+GONG

GONG

SDO/HMI

12

Helioseismological J2 measurements

# J2(⇥10�7) ±J2(⇥10�7) Reference Solar Model
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e The central value and error come from the time average of J2
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use data from SDO/HMI [99].
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1 2.25 0.09 Park ,11–14 [28]
2 2.246 0.022 Genova, 08–15 [29]
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F. von Feilitzsch, M. Wojcik, M. Wurm, S. Zavatarelli, K. Zu-
ber, and G. Zuzel, Experimental evidence of neutrinos pro-
duced in the CNO fusion cycle in the Sun, Nature 587, 577
(2020), arXiv:2006.15115 [hep-ex].

[8] S. Appel, Z. Bagdasarian, D. Basilico, G. Bellini, J. Benziger,
R. Biondi, B. Caccianiga, F. Calaprice, A. Caminata, P. Cav-
alcante, A. Chepurnov, D. D’Angelo, A. Derbin, A. Di Gi-
acinto, V. Di Marcello, X. F. Ding, A. Di Ludovico, L. Di
Noto, I. Drachnev, D. Franco, C. Galbiati, C. Ghiano, M. Gi-
ammarchi, A. Goretti, A. S. Göttel, M. Gromov, D. Gu↵anti,
A. Ianni, A. Ianni, A. Jany, V. Kobychev, G. Korga, S. Ku-
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A. Re, M. Redchuk, N. Rossi, S. Schönert, D. Semenov,
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ino Collaboration, Improved Measurement of Solar Neutrinos

1996-2008

2010-2020

1995-2011 [t avg!]

[t avg!]

[http://jsoc.stanford.edu/]

Duration

1995-2011
model

model

http://jsoc.stanford.edu/%5D
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The Gravitational Quadrupole Moment

Outcomes from helioseismology

SDO/HMI

JHeli

2 = (2.214 ± 0.002) × 10−7

SoHO/MDI

JHeli

2 = (2.206 ± 0.002) × 10−7

2010-2020

1996-2008

N.B.  cf. Antia et al., 

2008 time dependence ( )

|ΔJ2 | = 0.008 ± 0.002
0.009

δJ2 ≡ JOrb
2 |β=1 η=0 − JHeli

2 = (0.057 ± 0.006) × 10−7

But if the Earth’s orbit is not perfectly known 

(for  free)   β, γ ±0.006 → ± 0.020 [Konopliv, Park, Ermakov, 2020] 

 implies a non-luminous (and dark) disk!δJ2 > 0
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J ring
2 =

1
MrR̄2

(Iz − Ix) ; Is = ∫ d3rρ(r)(r2 − (r ⋅ ̂es)2)

Interpretation of the  PatternJ2
Consider a thin, dark disk or ring 


within Mercury’s orbit

Jext
2 = (1 − ϵr)J int

2 + ϵr ( R̄
R⊙ )

2

J ring
2

= (1 − ϵr)J int
2 + ϵr ( 1

R2
⊙ ) [ 1

4
(R2

o + R2
i ) −

h2

12 ]
Mass fraction in the ring     Mean radius                                                 ϵr ≡ Mr /M⊙ R̄ ≡ (Ri + Ro)/2

Solve for  ; use  to constrain non-luminous matterϵr δJ2 ≡ Jext
2 − J int

2
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2
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Dust Studies 

for the detection of non-luminous matter within Mercury’s orbit  

A ring of dust has been discovered in the path of 

Mercury’s orbit 

from the STEREO mission [Kaiser et al., 2008]

(excess reddening of light)

[Stenborg et al., 2018]

Its mass is poorly known, but a mass distribution

model suggests that its mass could be about 


 [Pokorny et al., 2023](1.02 − 4.05) × 1012±1 kg
However, this is only about !10−18M⊙
Direct evidence for a circumsolar dust ring has 

been found by WISPR on the Parker Solar Probe 

(excess dust - light scattering) at 

[Stenborg, Vourlidas, Paouris, Howard, ApJ, 972:24, 1 Sept, 2024]
Also note dust impacts on body of PSP via E-field instrument 
[Szalay, Pokorny, Malaspina, Plan. Sci. J. 5:266, Dec., 2024]

≈ 25R⊙ ≈ 0.12 AU
2024
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Possible future probes or tests include 

Future Tests

JOrb
2 |β=1 η=0 − JHeli

2 = 0.057 ± 0.006 [±0.020]
Assuming normal statistics, we have discovered 

which speaks to non-luminous matter (loosely) distributed 
within the plane of Mercury’s orbit. A significant fraction 

of it would seem to be dark matter 

•  Detected perturbations in Mercury’s orbit can speak to the existence of 
ultraheavy dark matter.  

•Studies of light reddening in the inner solar system can be used to separate a 
dusty, non-luminous component from dark matter. 

•The JUNO neutrino experiment is poised to measure CNO neutrinos with higher 
precision than BOREXINO and can test the latter’s inference of a 
nonhomogeneous zero-age Sun, which supports the existence of an early 
protoplanetary disk, some of which may still remain.

Also future searches (for TNOs…!) at larger distances from the Sun!
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Does the Sun have a dark disk?
G. Alves, SG, P. Machado, M. Zakeri

Phys. Rev. D 111, 083057 (2025) [arXiv: 2406.03607]…

Gustavo ZakiPedro

Yes and Yes?!
of non-luminous matter of dark matter



Backup Slides  
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Mass Budget
What can contribute to this missing mass and by how much?
•Dust (grains, diameter 10(100) μm to 1 cm), estimate:




•Rocks (assume same composition as dust), estimate 100 

with  radius 2.5 km would give ~ same mass as dust


•Micrometeroids, asteroids (small??)


•Galactic Halo Dark Matter  

7 × 1015±(≈1) kg ≈ 3 × 10−15±(≈1) M⊙

≈ 10−19M⊙
Although these estimates are uncertain, we appear to 

have a missing matter problem. 
What sorts of DM models could solve it?
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Mass Budget (beyond Earth radius)
Conventional SSSB object distribution is poorly known

where asteroids are modeled as spheres of radius r and the
power-law index is α; 2.7.

Assuming that all the asteroids are homogeneous bodies with
the same density ρ and a spherical shape, their mass
distribution ( = prm r4

3
3) is also described by a power-law

equation:

( )pr
= = = k- -

a
a

-
+dN

dm
dN
dr

dr
dm

a
m b m

3
4

3
2

1
3 2

3⎛⎝ ⎞⎠
with k = a+ 2

3
and ( )= pr

a-

b a
3

4
3

1
3 .

The parameter a can be calculated from the total mass M of
the whole asteroid population. In fact, assuming that asteroid
masses are distributed in the range from m0 to m1, the total
mass is given by:

( )ò
k

k
= =

¹

=
k

-
-

k k- -

M m
dN
dm

dm
b

b

for 2

log for 2
. 3

m

m
m m

m
m

2

0

1
1
2

0
2

1

0

⎧⎨⎩
The parameter a is therefore given by:

( )
pr

a
a

pr
a

=

´
-
-

¹

´ =

a a- -

a

M

r r
M

3
4

4
for 4

3
4

1
log

for 4
4

r
r

1
4

0
4

1

0

⎧
⎨⎪⎩⎪

where r0 and r1 are, respectively, the radii of asteroids with
mass m0 and m1.

The total mass of the asteroids in the Main Belt (semimajor
axis ;2.7 au) and of Jovian Trojans (semimajor axis ;5.2 au)
is estimated to be of about 10−4–10−3M⊕, where M⊕ is the
mass of the Earth, while the total mass of the asteroids in the
Kuiper Belt beyond Neptune (semimajor axis ;40–50 au) is
estimated to be about 10−2M⊕ (Pitjeva & Pitjev 2018).3

The NASA Jet Propulsion Laboratory (JPL) database
catalog (Jet Propulsion Laboratory 2022) provides the orbital
parameters of almost 106 small bodies along with their
diameters. The Trojan population is numerically 10%–25% of
the Main Belt population at sizes �100 km and the smallest
diameter reported in the catalog is about 10−3 km. In Figure 1,
the differential distribution of the radii of SSSBs found in the
JPL database is shown. In Davis et al. (2002), several estimates
of the Main Belt asteroid size distribution down to smaller
diameters are presented.

The model in Durda et al. (1998) is a fit to the distribution
determined by Jedicke & Metcalfe (1998), where the authors
used the Spacewatch data to estimate the size distribution of
SSSBs in the Main Belt. The estimate of the cumulative size
distribution of asteroids (i.e., number of asteroids N(d>D)
with diameter d greater than a certain value D) is given and
N(d> 10−2 km); 1010. In this work, we extend the model
down to diameters of ;20 cm, extrapolating it with a log-
parabola function. In particular, we assume the diameters to be
distributed according to the JPL catalog for values above
2.5 km, and to follow the extrapolated model of Durda et al.
(1998) for diameters in the range 20 cm–2.5 km. The resulting
model is shown in Figure 1 as a differential size distribution. In
the same figure, we also show the distributions obtained

assuming a power-law model as in Equation (1) for different
values of the parameter α, with a total mass of the asteroids
M= 5× 10−4M⊕, r0= 1× 10−4 km, r1= 470 km (Ceres’
radius), and assuming an asteroid density of 1 g cm−3. In
Figure 1, the differential distribution of the radii of the bodies
in the JPL catalog is also shown. The JPL catalog includes only
observed objects; therefore the size distribution is under-
estimated for smaller radii as these objects are difficult to
detect.
As explained in the following sections, the analysis of

gamma-rays detected by the LAT provides a way to set
constraints on the population and size distribution of asteroids.

3. Asteroids Gamma-Ray Emission

As mentioned in the previous section, asteroids should
produce a diffuse gamma-ray emission along the ecliptic plane
due to interactions of charged cosmic rays with their surfaces.
Hereafter, we will assume the asteroids to be spherical. The
gamma-ray flux produced by N(r, d) asteroids of radius r at
distance d from the Earth (in units of photons GeV−1 cm−2 s−1)
is given by the following equation (Ackermann et al. 2016;
Mazziotta et al. 2020):

( ) ( ) ( ) ( )f p=g g g gE d r
r
d

I E r N r d, , , , , 5
2

2

where Eγ is the gamma-ray energy and Iγ is the differential
intensity of gamma-rays at the production site.

3.1. Gamma-Ray Intensity at Production

The gamma-ray intensity at production for an asteroid of
radius r, in units of photons GeV−1 cm−2 sr−1 s−1, is given by:

( ) ( ∣ ) ( ) ( )òå=g g gI E r Y E E r I E dE, , 6
i

i k i k k

where Ii(Ek) is the intensity of the ith species of cosmic rays
impinging on the asteroid surface (mostly protons, electrons,
and He nuclei) and Yi(Eγ|Ek, r) is the yield of gamma-rays

Figure 1. SSSB size distribution. The distribution extracted from the JPL
database is indicated with black circles, while the points of our model are
indicated with black crosses. The colored bands show the power-law models
(Equation (1)) for different values of α, assuming that the total mass of
asteroids is 5 × 10−4 M⊕ and assuming an asteroid density of 1 g cm−3. The
black line shows the differential size distribution with α = 2.7.

3 The total asteroid mass is of the same order of magnitude as the mass of
Moon, which is ∼10−2M⊕.

2

The Astrophysical Journal, 951:13 (17pp), 2023 July 1 De Gaetano et al.

[de Gaetano (Fermi LAT) et al., 2023]
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Models of Dark Matter
That could contribute to a bound, dark ``disk’’ 

•WIMP-like candidates do not capture on the solar system   

efficiently enough


•Ultraheavy DM is a possibility — perhaps we have a PBH?! 


•ULDM is another possibility — can we build macroscopic  

constructs of it? Yes?!

ULDM Models that form BEC are constrained by 

observations of the Galactic Center [Della Monica et al., 2023]

ULDM with self-interactions (gravi-atoms) are

possible — perhaps Mercury has a massive dark halo
[Budker et al., 2023]

[Tran et al., 2023]

[Peters, 2009…]
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7

FIG. 1. Limits at 95% CL (2ω) on the maximum mass fraction, εr →
Mr/Mtot, of a dark matter/dust ring or disk around the Sun, derived
from the difference in gravitational and optical/helioseismological
determinations of the gravitational quadrupole moment J2 as in
Eq. (30), noting the maximum values of ϑJ2 at 2ω in Eqs. (31, 32),
plotted as dashed lines. The horizontal axis, R, is determined by the
geometric dimensions of the dark matter/dust ring or disk, as defined
in Eq. (27). The dashed line corresponds to constraints inferred from
the lunar libration limit on Jext

2 [109]. We refer to the text for all de-
tails.

where FϑJ2 (z) is the cumulative distribution function (CDF) of
the standard normal distribution,

FϑJ2 (z) =
1
↑

2ϖ

∫
↓

z
dt exp(↔t2/2) , (34)

and z = ↔µpost/ωpost. Here, µpost and ωpost are the poste-
rior mean and standard deviation, respectively. For a non-
informative (flat) prior where the standard deviation of the
prior (ωprior) tends towards infinity, µpost and ωpost simplify
to yield

z ↗
µJint

2
↔ µJext

2

ωJext
2
+ ωJint

2

. (35)

The deviation of the computed posterior probabilities, as for-
mulated in Eq. (33), from one are presented for six distinct
cases in Table I. We observe that even in the unconstrained
cases that the probability that a disk exists is high.

Limiting the mass of a non-luminous spherical halo:
For a spherical halo, setting Jring

2 = 0 in Eq. (25) yields

εs =
Jint

2 ↔ Jext
2

Jint
2

, (36)

in which we denote the fractional mass of the spherical halo by
εs → Ms/Mtot. We apply the Feldman-Cousins [112] method
to establish limits on εs given pairs of (Jext

2 , J
int
2 ) values. The

int
ext constrained unconstrained

Opt 0.210 0.221
Heli 1.0 ↘ 10↔21 0.091

Heli-All 2.4 ↘ 10↔17 0.089

TABLE I. The deviation of the disk structure’s presence likelihood
from one, 1 ↔ P(ϑJ2 > 0), evaluated using Eq. (33). We compared
the GR-constrained (unconstrained) Jext

2 values from MESSENGER
data, as given by Eq. (4), against the best optical and helioseismo-
logical determinations of Jint

2 , given by Eqs. (5, 12, 15), respectively.
We refer to the text for all details.
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FIG. 2. Limits at 95% CL (2ω) on the mass fraction of a spherical
dark matter halo surrounding the Sun, denoted as εs → Ms/Mtot, plot-
ted against the mass fraction, εr → Mr/Mtot, of a dust ring orbiting
within Mercury’s path. We input the values from Eqs. (4, 12) into
Eq. (38). The GR-constrained and unconstrained cases are shown in
green and red, respectively. We refer to the text for all details.

resulting limit on εs, derived by comparing the constrained
(unconstrained) MESSENGER Jext

2 values in Eq. (4) with JHeli
2

from Eq. (12), is given by

εs
∣∣∣∣
2ω
= 2.5 ↘ 10↔4 (8.3 ↘ 10↔3). (37)

We now take the existence of Mercury’s circumsolar dust
ring into account [20]. The portion of the dust ring that falls
within the orbit of Mercury would increase Jext

2 , such that
Eq. (36) changes to

εs =
(1 ↔ εr)Jint

2 ↔ Jext
2 + (εr/2) (R/R≃)2

Jint
2

, (38)

which would weaken the bounds on εs in Eq. (37) as shown in
Fig. 2, where we set the dust ring’s radius to R ↗ 0.31 AU.
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from Eq. (12), is given by
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We now take the existence of Mercury’s circumsolar dust
ring into account [20]. The portion of the dust ring that falls
within the orbit of Mercury would increase Jext

2 , such that
Eq. (36) changes to

εs =
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which would weaken the bounds on εs in Eq. (37) as shown in
Fig. 2, where we set the dust ring’s radius to R ↗ 0.31 AU.

Mass Limits at 95% CL


Bayesian Analysis
Feldman-Cousins

Under a Gaussian prior 

for , the posterior

probability that a “disk”

does not exist:

δJ2

GRGR

Note!
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Updated values of solar gravitational moments 2673

Table 1. Values of solar gravitational moments J2n (n = 1, 2, 3, 4, and 5) computed using solar models from CESAM and ASTEC stellar
evolution codes and rotation rates obtained from HMI and MDI helioseismic data, together with values from other authors also computed
using helioseismic estimates of internal rotation.

Authors Rotation data J2 (×10−7) J4 (×10−9) J6 (×10−10) J8 (×10−11) J10 (×10−12)

Present work SDO/HMI (CESAM) 2.211 − 4.252 − 1.282 5.897 − 4.372
SDO/HMI (ASTEC) 2.216 − 4.256 − 1.283 5.901 − 4.375
SoHO/MDI (CESAM) 2.204 − 4.064 − 1.136 5.404 − 3.993
SoHO/MDI (ASTEC) 2.208 − 4.069 − 1.137 5.408 − 3.996

Antia et al. (2008) GONG 2.22 − 3.97 − 0.8 1.1 7.4
SoHO/MDI 2.18 − 4.70 − 2.4 − 0.8 7.1

Mecheri et al. (2004) SoHO/MDI 2.205 − 4.455
Roxburgh (2001) SoHO/MDI (ISM) 2.208 − 4.46 − 2.80 1.49

SoHO/MDI (CSM) 2.206 − 4.44 − 2.79 1.48
Antia et al. (2000) GONG + SoHO/MDI 2.18 − 4.64
Armstrong & Kuhn (1999) SoHO/MDI 2.22 − 3.84
Godier & Rozelot (1999) SoHO/MDI 1.6
Pijpers (1998) GONG + SoHO/MDI 2.18
Paterno et al. (1996) IRIS + BISON + LOWL 2.22
Brown et al. (1989) SPO/Fourier Tachometer 1.7
Duvall et al. (1984) KPNO/McMath telescope 1.7

estimates of internal rotation are given in Table 1, where a difference
in sign convention has been taken into account concerning the results
of Armstrong & Kuhn (1999) and Antia et al. (2000). They have
been computed using equation (7), in which the function ψ2n and
the kernel F2n are evaluated using the quantities U and V from two
solar models obtained from CESAM (Morel & Lebreton 2008) and
ASTEC (Christensen-Dalsgaard 2008) stellar evolution codes. For
ω, we use time-averaged two-dimensional rotation rates obtained
from SDO/HMI helioseismic data of full-disc (fd V) dopplergrams
available in the SDO HMI-AIA Joint Science Operations Center
(JSOC) data base covering the period between 2010 April and 2020
July. For comparison purpose, we also compute J2n using rotation
rates provided by the Michelson Doppler Imager (MDI) onboard
of the Solar and Heliospheric Observatory (SoHO), available in
the same data base for the period between 1996 May and 2008
March. This comparison is all the more interesting as, unlike
previous contributions of Table 1, it uses rotation rates obtained
from an improved recent analysis of fd V MDI helioseismic data
(Larson & Schou 2015, 2018), which corrects for several geometric
effects during spherical harmonic decomposition as well as some
other physical effects such as the distortion of eigenfunctions by
the differential rotation and the horizontal displacement at the
solar surface. The HMI fd V data, which require less geometric
corrections, have been processed exactly in the same manner as
the MDI fd V data. The rotation rates for both data sets, have
been calculated using two-dimensional regularized least-squares
inversions (Schou et al. 1998) of odd rotational splitting coefficients
of f-mode and p-mode frequencies. Fig. 1 shows superimposed time-
averaged radial profiles at different latitudes of HMI (solid lines)
and MDI (dashed lines) rotation. The two rotation profiles are very
similar with only small differences at high latitude in the convective
zone. However, a more pronounced difference can be noticed in
deeper region inside the Sun below approximately 0.4R#. It should
be noted that these two locations are regions in the Sun where
rotation estimates are considered unreliable, but nevertheless, we
use them in our calculations in the absence of other alternatives.
Table 1 shows that, for the same solar model, the calculated values
of J2n from HMI and MDI rotation data have the same order of
magnitude with however a slightly larger absolute values for HMI
results. The difference is approximately of the order of 0.3 per cent

Figure 1. Time-averaged radial profiles of HMI (solid lines) and MDI
(dashed lines) rotation, obtained from helioseismic data of full disc (fd V)
dopplergrams, given each 15◦ from equator (top) to pole (bottom).

for J2 and increases for higher multipole moments to 4 per cent for
J4, 11 per cent for J6, 8 per cent for J8, and 9 per cent for J10,
presumably due to the difference in the rotation deep inside the Sun
for J2 and in the outer layers for higher multipole moments. Indeed,
as already emphasized by Antia et al. (2008), high-order multipole
moments are predominantly determined from the contributions of the
outer layers of the Sun where their integration kernels are principally
concentrated as shown in Figs 2 and 3 (for n = 2, 3, 4, and 5),
exhibiting substantial variation with latitude, with local minima and
maxima positioned approximately at radial distances between 0.8R#
and 0.9R#. On the other hand, the major contribution to J2 comes
from deeper regions where the corresponding integration kernel (see
Figs 2 and 3, for n = 1) exhibits its greatest value also at r ≈ 0.77R#
principally at low latitudes around 34◦. Note that the sensitivity
of high-order multipole moments to the differential rotation in the
outer layers of the Sun has been evidenced for J4 by Mecheri et al.
(2004), particularly the effect due to the presence of a subsurface
radial gradient. More pronounced differences in the values of J2n

have been found by Antia et al. (2008) using GONG and MDI
rotation rates (Table 1) which, according to the authors, are the

MNRAS 506, 2671–2676 (2021)
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time-averaged radial profiles of rotation
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Solar zones

Core Radiative

Convection
Assuming slow rotation, the equilibrium structure of a 
rotating star is determined by linear theory
[Goldreich & Schubert, 1968; Ulrich & Hawkins, 1981; application to : Pijpers, 1998; Mecheri & Meftah, 2021] J2n

Solar models are used for (non-rotating) inputs: ρ0(r); Mr
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The Gravitational Quadrupole Moment

Consider a static, isolated, spherical Sun, 


perturbed by its rotation (CM at origin)
Its gravitational potential for  is





r > R⊙

ϕo(r, θ) = −
GM⊙

r (1 − ∑
2n

( R⊙

r )
2n

J2nP2n(cos θ))

  Δ⊙ ≈ J1 +
3
2

J2 + J3 +
5
8

J4 +
Ω2R3

⊙

2GM⊙
⟹ J2 ≈

2
3 (Δ⊙ −

Δrsurf

R⊙ )

If external forces act, then odd terms can appear. 
Including the potential from differential rotation & 
placing the surface at an equipotential yields 

Δrsurf ≈ 7.8 mas [Dicke, 1970] 
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in support of non-luminous matter (over Gyrs) within Mercury’s orbit  
Ancillary Evidence 


•CNO  results 
[BOREXINO]


favor a Sun with metals in 
its core

(but not seen on its 
surface)

•Metallicity gradient can 
appear if Sun formed w/i 
long-lived protoplanetary 
disk


ν

A&A 667, L2 (2022)

Fig. 2. Neutrino fluxes obtained for the models with an opacity increase and planet formation. Shown are the models with an opacity increase
(circles; see also Fig. 1) and with both an opacity increase and a variable Zaccretion (i.e., planet formation processes; star symbols). The colors show
the opacity increase A2 2 [0.12, 0.18]. The opacity increase in this range leads to a better match with spectroscopic and helioseismic observations
(�2 . 0.5 indicated by the size). A higher opacity increase leads to lower �(8B), �(7Be), and �(CNO) values, whereas the planet formation
processes lead to higher values. Consequently, our best model with both an opacity increase of A2 = 0.12 and planet formation processes (i.e., star
symbol with white color) reproduces not only the observed constraints of neutrino fluxes (green circles with error bars) but also the spectroscopic
and helioseismic observations. (See “K2-MZvar-A2-12” and “K2-A2-12” in Table A.1 and the CDS table for more details about the models with
A2 = 0.12 and with and without planet formation processes, respectively.)
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Fig. 3. Long-term evolution of models with planet formation processes. Panel a: a schematic illustration of the evolution of a model with a variable
Zaccretion and an opacity increase of A2 = 0.12. In the early phase, the metallicity of the proto-Sun increases with time due to the high-Z accretion,
which results from the dust drift and selective removal of hydrogen and helium by disk winds (see text). Once protoplanets are formed or dust
grains in the protosolar disk are exhausted, the disk metallicity decreases, and consequently, the solar surface metallicity, Zsurf , decreases. The
signature of this variable Zaccretion remains in the solar core until the solar age. The circles (not to scale) show the solar metallicity profile at times
tA = 1.73 Myr, tB = 10 Myr, and t� = 4.567 Gyr. Panels b–d: the evolution of Zaccretion, Zsurf , and Zcenter of the models with a variable Zaccretion (solid
blue lines) and a constant Zaccretion (dotted gray lines), respectively. Panel e: the internal structure evolution (the so-called Kippenhahn diagram).
The cloudy and white regions show the convective and radiative regions, respectively. The two lines (blue and gray) are almost the same. A
radiative core emerges at time tA. The solid black line indicates the stellar mass. Panel f: the metallicity profile of the present-day Sun. Animations
that show the metallicity profile in the solar interior of these models are available online and at Zenodo. (See “K2-MZvar-A2-12” and “K2-A2-12”
in Table A.1 and the CDS table for more details regarding the models with and without planet formation processes, respectively.)

L2, page 4 of 10

[Haxton & Serenelli, 2008;
Kunitomo & Guillot, 2021; 
Kunitomo, Guillot, & Bulgen, 2022] 
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2674 R. Mecheri and M. Meftah

Figure 2. Three-dimensional plots (top panels) of the normalized kernel F2n as a function of x = r/R! and latitude for n = 1, 2, 3, 4, and 5 and their
corresponding contour plots (bottom panels).

Figure 3. Plots of latitudinal (top panels) and radial (bottom panels) cuts of the normalized kernel F2n for n = 1, 2, 3, 4, and 5, respectively for different values
of x = r/R! = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 and colatitude θ (◦) = 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, and 80◦.

direct consequence of the differences between the measured splitting
coefficients. For J2, our result are in close agreement with most of
the evaluations reported in Table 1, except for those of Godier &
Rozelot (1999), Brown et al. (1989), and Duvall et al. (1984), which
are considerably smaller. For Duvall et al. (1984) and Brown et al.
(1989), this difference is principally due to the very early helioseismic
data used in the inference of internal rotation, restricted to regions
close to the equator for the former. Surprisingly, Godier & Rozelot’s
value of J2 is also largely inferior to the ones obtained by Mecheri
et al. (2004) and Roxburgh (2001) despite of using exactly the same
rotation law. Higher order multipole moments J6, J8, and J10 have
the same order of magnitude as those of Roxburgh (2001) and Antia
et al. (2008), with however sensitively different exact values. It is
worth mentioning that Roxburgh’s results have been obtained using
a rotation model in a parametric form which roughly approximate the
internal rotation inferred from helioseismology. Note from Table 1,
that for the same rotation data, our results from the two solar models

are in very good agreement with insignificant differences inferior to
0.2 per cent. Similar compatibility was found by Roxburgh (2001)
for J2, J4, J6, and J8 computed using inverted (ISM) and calculated
(CSM) solar models (see Table 1). This compatibility is also verified
when comparing the values of J2 and J4 obtained respectively by
Roxburgh (2001) and Mecheri et al. (2004) using distinct solar
models but the same model of rotation of Kosovichev (1996). Both
authors pointed out that the differential rotation in the convective
zone introduces only a diminution of 0.5 per cent of the value of J2

with comparison to the one obtained for a Sun rotating uniformly
at the rotation rate of the radiative interior. This indicates that the
quadrupole moment J2 is basically determined by a spherically
averaged rotation whose departure from interior rotation is relatively
small (Roxburgh 2001).

On the other hand, the sensitivity of high-order multipole moments
to the differential rotation in the convective zone makes them
responsive to the observed temporal variation of the latitudinal
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Helioseismology: Systematics?


[Mecheri & Meftah, 2021] 

J2n = ∫
1

0 ∫
1

−1
dudx F2n(x, u)(ω(x, u))2

  J2  J4

Note  kernel largest in radiative zone! J2

equator

pole
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The Gravitational Quadrupole Moment

From all orbital measurements

13

Orbital J2 measurements

# J2(⇥10�7) ±J2(⇥10�7) ELT PPN Reference

1 180 200 N N Lieske, 49–68 [147]
2 13.9 24.7 N Y Shapiro, 66–71 [148]
3 25 16 N Y Anderson, 11–76 [149]
4 12.3 11.5 N N Anderson, – [116]
5 �1.8 4.5 N Y Eubanks, – [116]
6 �11.7 9.5 N Y Pitjeva, – [116]
7 �1.3 4.1 N Y Pitjeva, 64-89 [150]
8 2.4 0.7 N Y Pitjeva, – [151]
9 �5 10 N Y Williams, 96–00 [152]
10 6.6 9.0 N N Afanaseva, 80–86 [153]
11 �6 58 N N Landgraf, 49–87 [154]
12 2.3 5.2 N Y Anderson, 71–97 [155]
13 1.9 0.3 N Y Pitjeva, 61–03 [156]
14 2.22 0.23 N Y Pitjeva, – [116]
15 2.25 0.09 Y Y Park ,11–14 [28]
16 2.246 0.022 Y Y Genova, 08–15 [29]
17 2.46 0.68 N Y Standish, - [157]
18 2.295 0.010 N N Viswanathan, - [158]
19 1.82 0.47 N N Fienga, - [159]
20 1.8 ? N Y Konopliv,– [160]
21 2.0 0.20 N Y Pitjeva,– [161]
22 2.40 0.25 N Y Fienga, - [162]
23 2.27 0.25 N Y Fienga, - [163]
24 2.22 0.13 N Y Fienga, - [163]
25 2.165 0.12 Y Y Fienga, - [146]
26 2.206 0.03 Y Y Fienga, - [146]
27 2.40 0.20 N Y Verma, - [164]
28 2.010 0.010 N N Fienga, - [165]
29 2.2180 0.01 Y N Fienga, - [166]

TABLE V. Extended summary of the orbital J2 assessments including
information as to whether the references included a simultaneous fit of
the PPN parameters or the ELT e↵ect correction in their analysis.
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Table 3. Measurements of the Circular Velocity of the Milky Way.

R Vc �Vc

[kpc] [km s�1] [km s�1]

9.5 221.75 3.17
10.5 223.32 3.02
11.5 220.72 3.47
12.5 222.92 3.19
13.5 224.16 3.48
14.5 221.60 4.20
15.5 218.79 4.75
16.5 216.38 4.96
17.5 213.48 6.13
18.5 209.17 4.42
19.5 206.25 4.63
20.5 202.54 4.40
21.5 197.56 4.62
22.5 197.00 3.81
23.5 191.62 12.95
24.5 187.12 8.06
25.5 181.44 19.58
26.5 175.68 24.68

4. Results

4.1. Measurement of the rotation curve and comparison with
Ou et al. (2023)

We report our final circular velocity in Table 3. Figure 5 shows
our final circular velocity curve and one of our best fits with
n = 0.43, h = 11.41 kpc, and ⇢0 = 0.01992 M� pc�3 (see first
line of Table 4). In our study, as well as in Ou et al. (2023), error
bars account for systematic uncertainties. For R � 13 kpc, the
two RCs are in reasonably good agreement except for one point
at about 23 kpc (see Fig. 1). We suspect that this discrepancy is
caused by the disagreement over the radial velocity component at
R ⇠ 23 kpc, for which the top panel of Fig. 3 of Ou et al. (2023)

shows a large deviation on
q
hv2

R
i. In the range of R = 9�13 kpc,

our RC points are slightly lower than those of Ou et al. (2023),
which is discussed in Appendix A.

The largest discrepancy between the RC of this paper and
that of Ou et al. (2023) is perhaps related to the amplitude of the
error bars, which are larger in this latter study (compare Fig. 4
with Fig. 5 of Ou et al. 2023).

Both RCs show a significant decline with increasing radius,
which can be well approximated by a linear function (see
Fig. 2):

Vc(R) = V(R�) + �(R � R�), (10)

where R� is the distance between the Sun and the Galactic
centre3. We find that the slope of our declining RC is � =
�(2.18 ± 0.23) km s�1 kpc�1, which is similar to the value of
� = �(2.22 ± 0.20) km s�1 kpc�1 obtained by Ou et al. (2023)4.

Wang et al. (2023a) also split the Galactic region into two,
one with galactic latitude b > 0� and the other with b < 0� (or

3 We note that R� = 8.34 kpc for this RC and 8.178 kpc for RC of
Ou et al. (2023).
4 In the present study, we accounted for the systematic uncertainties
of Ou et al. (2023, see their Fig. 5) when deriving parameters from the
corresponding RC. The values that cannot be seen in their Fig. 5 have
been chosen to be 0.14.

Fig. 5. Circular velocity of the Milky Way. The red data points are
the measurements computed in this work; error bars include systematic
uncertainties. The black solid line represents the sum of the baryonic
and dark matter components: the baryonic model B2 (blue-dashed line),
including its decomposition into baryonic components (bulge, disc, gas,
and dust) and the best fit of the Einasto dark matter profile (red-dashed
line).

one with z > 0 kpc and the other with z < 0 kpc) and found an
uncertainty on the slope of RC of ⇠20%.

4.2. Comparison with Zhou et al. (2023)

Figure 1 shows that the RC from Zhou et al. (2023) indicates
larger velocities at the MW disc outskirts. In Appendix B, we
compare the distances adopted by the present study to those
adopted in other estimates (see Fig. B.1), which leads us to sus-
pect that the distances by Zhou et al. (2023) are overestimated.
After correcting for this, it appears that the Zhou et al. (2023)
RC is consistent with both the RC of the present study and that
from Ou et al. (2023). We also notice that Zhou et al. (2023) did
not consider the impact of the cross-term when analysing sys-
tematic uncertainties. For consistency, we have not considered
this study in the following.

4.3. Estimated range for the dynamical mass of the Milky
Way

Using a Bayesian analysis, one can determine the poste-
rior distribution of the model parameters based on the given
data. In the present study, we applied the Markov chain
Monte Carlo (MCMC) a�ne invariant sampler EMCEE5

(Foreman-Mackey et al. 2013) to test the parameter space of the
Einasto profile using flat priors; that is, M0 = 4⇡h3⇢0, h, and
1/n, from 1010 to 1014

M�, from 0 to 20, and from 0 to 5, respec-
tively. Following previous studies, the sum of the logarithm of
the likelihood for the observed RC can be derived as:

lnL = �1
2

X

i

 
vmod,i � vobs,i

�i

!2

(11)

where the summation i is done over all the data points, vmod is
the theoretical circular velocity from the MW models, vobs is the
measured circular velocity, and � is the statistical uncertainty of
the measurement (see Sect. 2.2).

5 https://github.com/dfm/emcee
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 Rotation Curve of our Milky Way
 with Gaia DR3!  

And in the Milky Way: the observed circular speed 
does not track the luminous mass.

Problems at very different length scales persist…  

[Jiao et al., A&A, 2023] 
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The Laplace-Runge-Lenz Vector
and the Kepler problem  

A = p × L − GMm2 ̂r
[Credit: Cronholm144 (LRL, Wikimedia)]

E and  conservation guarantee in-plane orbital precession 

under perturbations

L
[Goldstein, e.g.] 


