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Nuclear clock and new physics
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Nuclear clock

• Atomic clock such as 171Yb+ has a ∼ 10−18 uncertainty

[Huntemann et al. PRL 116 (2016) 063001]

• Can we do better than an atomic clock? Yes!

Nuclear clock can reach ∼ 10−19 uncertainty

[Campbell et al. PRL 108 (2012) 120802]

• Beyond precision goals, this is a new kind of technology

• The candidate is 229Th that has two states (isomers) with ∆E ∼ 8 eV
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Nuclear clock

• Laser excitation of this transition was reported last year

[Tiedau et al. PRL 132 (2024) 182501]

[Elwell et al. PRL 133 (2024) 013201]

[Zhang et al. Nature 633 (2024) 63-70]

• Fun fact: Need to use exact values of ~ and e for such precision

• Such a small ∆E is assumed to be an accidental cancelation between
electromagnetic (∆Eem) and nuclear (∆Enuc) nuclear energies
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Nuclear clock

• Such a small ∆E is assumed to be an accidental cancelation between
electromagnetic (∆Eem) and nuclear (∆Enuc) nuclear energies

• How can nuclear clock help with searching for new physics?

• Assume αem is changing with time
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• Since ∆Eem is linear in αem (up to α2
em corrections)
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• Nuclear clock has enhanced sensitivity to

αem time variation arising, e.g., from dark matter
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Nuclear clock

δ(∆E )

∆E
' ∆Eem
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δαem

αem
≡ K

δαem

αem• Nuclear clock has enhanced sensitivity to αem time variation

• We need to estimate ∆Eem to find the enhancement factor K

• What do we know about the EM properties of the nucleus?

• Apart from the charge radius 〈r2〉 ≡
∫
d3r r2ρ(r , θ)/e Z ,

the quadrupole moment Q0 ≡
∫
d3r r2ρ(r , θ)

[
3 cos2(θ)− 1

]
/e

can help estimate ∆Eem
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Nuclear clock

δ(∆E )
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αem
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αem

• Nuclear clock has enhanced sensitivity to αem time variation

• We need to estimate ∆Eem to find the enhancement factor K

• We estimated ∆Eem in [Caputo, Gazit, Hammer, Kopp, GP, Perez,
Springmann arXiv:2407.17526 (hep-ph)]

In particular we asked can K = ∆Eem/∆E be zero?

• Used two methods

- A classical “geometric” model

- A quantum “halo” model
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Estimating nuclear clock’s sensitivity:
classical model
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Estimating ∆Eem

• We estimated ∆Eem in [Caputo, Gazit, Hammer, Kopp, GP, Perez,
Springmann arXiv:2407.17526 (hep-ph)]
In particular we asked can K = ∆Eem/∆E be zero?

• First method: classical “geometric” model
• Assume Woods–Saxon like distribution

ρ(r , θ) =
ρ0

1 + exp
(
r−R(θ)

z

) ,
where z is the “surface thickness” of the nucleus and

R(θ) = R0 [1 + β2Y20(θ) + β3Y30(θ) + β4Y40(θ) + . . . ] ,

R0 is fixed by the charge radius, β2 by the quadrupole moment

• The energy is

Eem ' EC[〈r2〉,Q0, z , β3, β4] =
1

2

∫
d3r d3r′

ρ(r , θ) ρ(r ′, θ′)

|r − r′|
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Classical “geometric” model

• First method: classical “geometric” model

• Assume Woods–Saxon like distribution

ρ(r , θ) =
ρ0

1 + exp
(
r−R(θ)

z

) ,
where z is the “surface thickness” of the nucleus and

R(θ) = R0 [1 + β2Y20(θ) + β3Y30(θ) + β4Y40(θ) + . . . ] ,

R0 is fixed by the charge radius, β2 by the quadrupole moment

• Previous study assumed constant nuclear volume correlating R0 &β2
[Fadeev, Berengut, Flambaum, PRA 102 052833 (2020)]

• We do not make such assumptions, add β4 and “scan” over the
values of β3 and β4 to find the energy

Eem ' EC[〈r2〉,Q0, z , β3, β4] =
1

2

∫
d3r d3r′

ρ(r , θ) ρ(r ′, θ′)

|r − r′|
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Estimating ∆Eem using a classical geometric model
• Using the classical geometric model

• K = 0 is unlikley
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Estimating nuclear clock’s sensitivity:
quantum model
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Halo picture of 229Th

• Consider ground state (J = 5/2) and the isomer (J = 3/2) as
L = 2 “halo” neutron around a spin-0 228Th “core”
The difference between the two states is the neutron spin
• In principle for halo nuclei can use halo EFT

[Hammer, Ji, Phillips, J. Phys. G 44, 103002 (2017)]
• Two problems

1) Scales not well-separated: Neutron separation energy is
5.2 MeV for 229Th vs. 7.1 MeV for 228Th
Compare to 19C≈ 18C+halo neutron. Neutron separation energy is
0.5 MeV for 19C vs. 4 MeV for 18C

2) L = 2 halo EFT less predictive
leading-order dependence of most observables on counter-terms
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Estimating ∆Eem using a halo model

• Consider ground state (J = 5/2) and the isomer (J = 3/2) as
L = 2 “halo” neutron around a spin-0 228Th “core”
The difference between the two states is the neutron spin

• While EFT description is difficult it inspires a “halo model”
Same charge densities for the states apart from spin–orbit interaction

• To test the model we calculate
- ∆〈r2〉SO = 0.0047 fm2 compared to ∆〈r2〉 = 0.012(2) fm2

- ∆〈Q0〉SO = 0.185 fm2 compared to ∆〈Q0〉 = 0.176(2) fm2

Both are insensitive to neutron wave-function near the origin (“UV”)
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Estimating ∆Eem using a halo model

• Consider ground state (J = 5/2) and the isomer (J = 3/2) as
L = 2 “halo” neutron around a spin-0 228Th “core”
The difference between the two states is the neutron spin

• While EFT description is difficult it inspires a “halo model”
Same charge densities for the states apart from spin–orbit interaction

• Calculating the energy difference

∆ESO ≈ 144 keV×O(1) factor

O(1) factor arises from neutron wave-function near the origin
• K = ∆ESO/∆E ≈ 104 from halo model
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Conclusions
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Conclusions

• Nuclear clock will be a a new kind of technology

Laser excitation of the required transition was reported last year

• Nuclear clock has enhanced sensitivity to αem time variation arising,
e.g., from dark matter. Sensitivity depends on K = ∆Eem/∆E

• We estimated ∆Eem in [Caputo, Gazit, Hammer, Kopp, GP, Perez,
Springmann arXiv:2407.17526 (hep-ph)]

• Used two methods

- A classical “geometric” model: K = 0 unlikely

- A quantum “halo” model: K ≈ 104

• Nuclear clock very likely sensitive to new physics

• This is just the beginning. Field is advancing fast. More work to do!
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Backup
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Halo model calculation details

• Eem ∼ MeV � neutron mass ⇒ use non-relativistic expansion
to find the spin-dependent part of charge density ρSO
• ρSO at lowest order in non-relativistic expansion

[Manohar PRD 56 230 (1997)]

ρSO =
µn

2m2
n

iσ ·
(
p′× p

)
→ µn

2m2
n

iσ · (∇Φ†)× (∇Φ)

[Ong, Berengut, Flambaum PRC 82 014320 (2010)]
Φ is neutron wave function and µn neutrino magnetic moment
• Both
- charge radius squared 〈r2〉 ≡

∫
d3r r2ρ(r , θ)/e Z ,

[Ong, Berengut, Flambaum PRC 82 014320 (2010)]
- quadrupole moment Q0 ≡

∫
d3r r2ρ(r , θ)

[
3 cos2(θ)− 1

]
/e

[Caputo, Gazit, Hammer, Kopp, GP, Perez, Springmann
arXiv:2407.17526 (hep-ph)]
are related to the normalization of Φ and don’t require its form

- ∆〈r2〉SO = 0.0047 fm2 compared to ∆〈r2〉Exp = 0.012(2) fm2

- ∆〈Q0〉SO = 0.185 fm2 compared to ∆〈Q0〉Exp = 0.176(2) fm2
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Halo model calculation details

• The energy is [Sakurai, Modern Quantum Mechanics (2nd Edition)]

ESO =
e µn
2m2

n

1

2

[
j(j + 1)− `(`+ 1)− 3

4

] ∫ ∞
0

[
[u(r)]2

r

dVC

dr

]
dr

- ` = 2 and j = 5/2 (ground state) or 3/2 (isomer)

- VC(r) Coulomb potential of Th228 core

• u(r) is the “excess” neutron’s radial d-wave function:

u(r) = A(r)e−γr
(

1 +
3

γr
+

3

(γr)2

)
[Zelevinsky, Volya, Physics of Atomic Nuclei, Wiley-VCH, 2017]

- γ ≡
√

2mnEB , EB = 5.2 MeV is the binding energy

- A(r) is determined by short-range physics

• Calculating the energy difference

∆ESO ≈ 144 keV×O(1) factor

O(1) factor arises from neutron wave-function near the origin
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