

Precision Magnetic Field Measurements in Muon g-2

David Kessler – University of Massachusetts, Amherst Muon g-2 Collaboration CIPANP 2025 11 June 2025

The g-2 Magnetic Field

- The Muon g-2 experiment uses a magnetic storage ring at 1.45 Tesla.
- Muon anomalous moment, equation for a_{μ} :

$$\omega_a = -a_\mu * \left(\frac{q}{m_\mu}\right) * B$$

- a_{μ} precision goal: 140 ppb.
- B precision goal: 70 ppb.

Muon g-2 Magnetic Storage Ring.

Measuring with Nuclear Magnetic Resonance (NMR)

- FID signals from proton precession in sample.
- FID frequency is proportional to B.

$$\omega_p = \frac{g_p q}{2m_p} B$$

Coefficient known to 4.1 ppb.

Measurement Overview

• Trolley Probes and Fixed Probes:

17 **trolley probes** map the field along the muon beam path.

378+ **fixed probes** track changes in the field while muons are running.

Relative positions of trolley and fixed probes.

Trolley Runs

Trolley runs were performed every ~3 days, with muon beam off.

Each trolley run covers the circumference of the storage ring.

Analysis Overview

- Tasks and Challenges:
 - Interpolation Combining trolley and FP data.
 - Calibration Trolley perturbs field while present.
 - Transient Fields Synched to muon injection, while trolley/FP are asynchronous.

The Objective:

Shielded proton

Spherical water sample at 25° Celsius

In field averaged over time/space muon distribution

• Shielded proton frequency $\tilde{\omega}_p'$ combines with ω_a , alongside known fundamental constants, to produce a_μ .

is why we aim for $\widetilde{\omega}_p'$.)

Interpolation

- Fixed probes measure between each trolley run pair, showing evolution from one map to the next.
- Any mismatches between evolved initial map and next map become uncertainties.

Trolley Calibration

- Determines field perturbation from trolley structure.
- Each trolley probe compared to calibration probe.
 - Cali probe is solo, so less field perturbation.
- Alignment and Rapid Swapping procedure.
- Nine campaigns over the course of g-2 operations.

Trolley Calibration Campaign Results

‡ Fermilab

Absolute Calibration

- Getting $\widetilde{\omega}'_p$ (*shielded spherical-water...*) from $\omega_p(cali \ probe)$.
- Tests performed with Argonne magnet to quantify each effect: Calibration Probe vs Absolute Probe.

$$\widetilde{\omega}_{p}^{\prime}(T_{r}) = \begin{bmatrix} 1 + \delta^{T}(T_{r} - T) + \left(\epsilon - \frac{1}{3}\right)\chi_{H_{2}O}(T) - \delta_{probe} \end{bmatrix} \omega_{p}(cali \ probe, T)$$

$$Temperature$$

$$Correction$$

$$\sim 10 \ ppb$$

$$Shape \ and$$

$$Susceptibility \ Effects$$

$$\sim 1500 \ ppb$$

$$Material \ Effects$$

$$\sim 10 \ ppb$$

Cross-Calibrations

- Extra tests using probes undergoing independent calibrations.
- Cross-Calibration #1: Cali probe vs ³He probe.
- Cross-Calibration #2: Cali probe vs J-PARC probe.

 Increased uncertainty by 25ppb, but improved our confidence in the resulting uncertainty. ³He-based spherical alternate probe

Agreement on the 1.7 σ -level, supporting results for material effect and shape factor.

J-PARC Continuous Wave NMR probe

2019 (1.45T), 2019 (1.7T) campaigns: some inconsistencies.

2022 (3T), 2023 (1.45T) campaigns: in good agreement.

Transient Fields

Kicker transient field and Faraday Effect magnetometers.

Electrostatic Quadrupoles transient field and NMR magnetometer.

Uncertainty Improvement

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)		56
C_{e}	489	53
$\tilde{C_p}$	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q^{\sim}	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_{e}		22
$g_e/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462

Run-1 Uncertainties Table

Run-4/5/6 Uncertainties Table

Quantity	$\begin{array}{c} \text{Correction} \\ \text{(ppb)} \end{array}$	${f Uncertainty}\ ({ m ppb})$	
ω_a^m (statistical)		114	
ω_a^m (systematic)		30	
C_e Electric Field	347	27	
C_p Pitch	175	9	
C_{pa} Phase Acceptance	-33	15	
C _{dd} Differential Decay	26	27	
C_{ml} Muon Loss	0	2	
$\langle \omega_p' \times M \rangle$ (mapping, tracking)		34	Field uncertainty total:
$\langle \omega_p' \times M \rangle$ (calibration)		34	56 ppb.
B_k Transient Kicker	-37	22	
B_q Transient ESQ	-21	20	Target Achieved!
μ_p'/μ_B		4	
m_{μ}/m_e		22	
Total systematic for \mathcal{R}'_{μ}		76	
Total for a_{μ}	572	139	

Relative Field Uncertainties

Conclusion

• Muon g-2 result diagram:

- Magnetic field measurements are important to Muon g-2's precision goal.
- NMR systems: Fixed Probes tracking, Trolley Probes mapping, and Calibration Probes calibrating.
 - Plus plenty of analysis, extra measurements, and corrections!
- Goal achieved!

