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Rosswog+13

NSM dynamical ejecta

Hydrodynamic simulations 
provide us with a “trajectory”: 
density / temperature / position 
as a function of time

Both experimental + theoretical 
nuclear inputs:

The need for nuclear inputs is not isolated to reactions and 
decays in the network: 
• input initial composition dependent on EOS
• outputs are post-processed to evaluate nuclear heating, light 

curves, gamma spectra…
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TITAN mass measurements: Cs, Ba

Yeh, Cordova, Wang, et al (including Vassh), et al (in prep)

Solar abundance comparison

no fission

fission!!!

*impact study led by TRIUMF postdoc Tsung-Han Yeh
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Ab initio nuclear theory: new reach into r-process nuclei
This work
Previous ab initio reach

Dripline ab initio
Dripline HFB-24

AME 2020 
FRIB reach

r-process path

Hu, Larivière, Vassh, Holt, Yeh, Arcones, Schwenk, et al. (in prep)



Ab initio nuclear theory: new reach into r-process nuclei

Hu, Larivière, Vassh, Holt, Yeh, Arcones, Schwenk, et al. (in prep)

New ab initio masses change 
predictions of key heavies 
like Pt, Au 
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Neutrinos

SN1987A: 
A famous core-collapse supernova
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No. 2, 1992 BOLOMETRIC EVOLUTION OF SN 1987A L35 

Fig. 2.—Bolometric evolution of SN 1987A through day 1444. The solid 
line from day 1 to 500 represents the estimates of the bolometric flux based on 
the U to M integration (see Suntzeff & Bouchet 1990), and the filled circles 
represents the U to 20 /¿m integration. The dotted lines represent the estimates 
for the energy deposition (WPH89) for the four radioactive nuclides, except 
that the 57Co has been raised to 5 times solar. The initial masses of these 
radioactive nuclides are: 56Ni (and subsequently 56Co), 0.075 M0; 44Ti, 
1 x 10"4 M0; 22Na, 2 x 10~6 M0; and 57Co, 0.009 M0 (5 times solar). By 
day 700, the observed bolometric flux is greater than the amount of energy 
deposited by 56Co and another energy source is present. 

From the early-time evolution of SN 1987A, we know the 
amount of 56Ni (and its daughter 56Co) synthesized in the 
explosion was 0.069 ± 0.0012 M0 (Bouchet et al. 1991b). In 
order to characterize the energy sources that dominate the 
late-time evolution, we have subtracted the energy deposition 

that corresponds to 0.069 M0 of 56Co from the observed bolo- 
metric luminosity. In addition, in order to understand how the 
uncertainties in the assumed amount of 57Co affect the results, 
we have also done the same calculation for the 3 a limits of 
56Co (0.073 and 0.065 M0). All three calculations show that 
the non-56Co energy source declined by at least a factor of 20 
from day 600 to 1500. The calculation for the 0.065 M0 of 
56Co, however, gave a very large excess for days 600 to 800 
that could not be fit by the models described below, so we have 
ignored this fit in the following discussion. 

In Figure 3, we plot this energy “ excess,” that is, the differ- 
ence between the observed bolometric luminosity and the pre- 
dicted energy deposition from 0.069 or 0.073 M0 of 56Co. One 
of the major conclusions to be drawn from Figure 3 is that the 
energy excess must be predominantly from an energy source that 
is exponentially declining in time. This is inconsistent with a 
constant energy source, such as that envisioned from a X-ray 
pulsar such as Her X-l or SMC X-l, or an embedded radio 
pulsar similar to the Crab pulsar (WPH89; Kumagai et al. 
1989). The energy deposition from an X-ray pulsar with the 
spectral energy distribution of Her X-l or SMC X-l is expected 
to decline by less than 40% from day 600 to 1500 due to the 
changing optical depth in the homologously expanding 
envelope. The Crab pulsar, which has a softer spectral energy 
distribution in the X-ray region, is expected to decline by a 
factor of 2.6 during this time interval as compared with an 
observed decrease of roughly a factor of 20. 

The exponential decline shown in Figure 3 can be explained 
naturally by the energy deposition from a radioactive nuclide. 
The solid lines refer to the best fit to the data for the energy 
deposition from 57Co (enhanced by factors of 5 and 6 over the 
predicted or “solar” value), and “solar” values for 44Ti 
(1 x 10“4 Mq) and 22Na (2 x 10-6 M0). Over this time 
range, the latter two radioactive nuclides deposit negligible 
energy into the bolometric luminosity for such large enhance- 

Fig. 3a Fig. 3b 
Fig. 3.—Difference between the observed bolometric flux and the predicted energy deposition from 0.069 M0 (a) and 0.073 M0 (b) of 56Co. The solid lines are the 

energy deposition from enhanced 57Co, and the dashed lines are the fits with the maximum pulsar luminosity (and thus minimum 57Co energy deposition) consistent 
with the observed data. Note that the slope of the energy deficit is the same as the predicted energy input from 57Co. The best-fit to the data without the pulsar is 6 
times solar (a) and 5 times solar (b) of 57Co. Using a pulsar with the energy spectrum of the Crab pulsar, the best fits are 4 times solar 57Co plus a pulsar with a total 
spectral energy of 37.25 dex (a), and 3 times solar 57Co plus 37.45 dex from a pulsar {b). The actual energy deposited by the pulsar is ~ 36.9 dex or less (see text). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Light curve

56Ni à56Co + g (T1/2~6 days)
56Co à56Fe + g (T1/2~77 days) 

Woosley&Janka 06

Suntzeff+92

Multi-messenger events:
Supernovae



Abbott+17

GW170817 & AT2017gfo: 
Binary neutron star merger

Over ~70 observing teams (~1/3 of the worldwide astronomical 
community) followed up on the merger event! 

Multi-messenger events:
Neutron star mergers

Gravitational waves

Post-merger disk ejecta

See Just+16, Miller+19, Most+21, 
Sprouse+23, Fernandez+23…

NSM dynamical ejecta

See Rosswog+13,Wanajo+14, 
Bovard+17, Radice+19, 
Perego+19, Foucart+20….

Hurt/Kasliwal/Hallinan, Evans, and the GROWTH collab.

Optical (Blue) Optical (Red)

Neutron-rich ejecta from neutron star mergers 
predicted for > 40 years

(see e.g. Lattimer&Schramm 74, Lattimer+77)



i-process
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+ more...

Observed kilonova light curve
GW170817 

Actinides

IR
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bands
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bands

A beacon of in situ lead production – Thallium-208’s 2.6 MeV emission line

Optical (Blue) Optical (Red)

Kilonova emission -> IR with longer duration light 
curve implies high-opacity lanthanide elements
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Majorana 
demonstrator
(76Ge neutrinoless

double 𝛽-decay search)

Alvis+19

The 2.6 MeV gamma-ray line of Tl-208 and the Th-232 decay chain



Majorana 
demonstrator
(76Ge neutrinoless

double 𝛽-decay search)

Alvis+19

The 2.6 MeV gamma-ray line of Tl-208 and the Th-232 decay chain

And many more! e.g.:
Exp. background: SNO+,
Nuclear safeguards: detect shielded 
enriched U-232, 
Nuclear medicine: Clinical imaging 
studies using 224Ra α-particle therapy
Geology: aerial surveys to map out 
terrestrial Th, 
Soil and Hydrological Sciences: studies of 
soil and water content….



Movie by 
M. Larivière

r process in neutron star mergers: 
MeV gamma rays emitted from the 𝛽-decay of neutron-rich isotopes


gammaSpectrum

Matplotlib



hours days years

r process in neutron star mergers: 
MeV gamma rays emitted from the 𝛽-decay of neutron-rich isotopes

@ 10 kpc (Galactic)

Vassh, Wang, Larivière+24 (PRL 132, 052701)
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i process in rapidly accreting 
white dwarfs (RAWDs)

Vassh, Wang, Larivière+24 (PRL 132, 052701)



Comparison with other nuclei with decays emitting in the 2.5-2.8 MeV energy range

Vassh, Wang, Larivière+24 (PRL 132, 052701)
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Hydrodynamic simulations of r process and s process 
events show distinct elemental abundance patterns

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)



Hydrodynamic simulations of r process and s process 
events show distinct elemental abundance patterns

Stellar abundance patterns are available for 
> 100 metal-poor stars

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)
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Hydrodynamic simulations of r process and s process 
events show distinct elemental abundance patterns

Stellar abundance patterns are available for 
> 100 metal-poor stars
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Machine learning can 
classify patterns = 

Machine learning can 
classify stars

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)



Binary classifier 
(supervised training on r and s)

Machine learning to classify metal-poor stars as r or s: 
Ba, lanthanide, and Pb abundances

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)



One-class classifier 
(unsupervised training on r or s)

Machine learning to classify metal-poor stars as r or s: 
Ba, lanthanide, and Pb abundances

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)
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Machine learning to classify 
metal-poor stars as r or s or i

* Some metal-poor stars have been 
previously found to not be compatible with
r or s elemental abundance ratios, points 
to intermediate neutron capture process (i) 

* There are 2/5 i stars the one-class classifier 
suggests to belong in either the r or s
group

* The one-class classifier trained on r or s
almost never wants to identify 3/5 i stars 
as r or s! 

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)
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63 64 66 70 71 
75 78 93 94 95 
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0.0 < [La/Eu] < 0.6



www.physicstoday.org November 2007    Physics Today 49

neutron lies very close in energy to the continuum, and the
two most energetic shells are not well separated.

The idea that magic numbers are actually not immutable
occurred only during the past 10 years, as experimenters
began to probe exotic nuclei. For example, the nucleus beryl-
lium-12 would be expected to exhibit the properties of a nu-
cleus with magic number N = 8, but as illustrated in figure
2, the expected large separation in shell energies was not ex-
perimentally verified. Similarly, the magic character of neu-
tron number N = 20 appears to have vanished in the exotic
nucleus magnesium-32. It had been widely speculated that
doubly magic oxygen-28 would be particularly stable, as is
doubly magic 16O. Experiments, however, showed that 28O is
not even bound. On the other hand, strong indications point
to large shell gaps suggestive of magic numbers in other nu-
clei far from stability: The figure identifies four of those.
Three exotic doubly magic nuclei—neutron-deficient tin-100
and neutron-rich nickel-78 and tin-132—are showing sur-
prises as well. For example, the measured half-life of 78Ni is
1/3 to 1/4 as much as theorists predict.4 Unstable nuclei near
magic numbers may also decay in particularly interesting
ways. Researchers have long understood that nuclei along
the proton drip line decay by proton emission, and experi-

mental evidence now indicates a new and exotic two-proton
decay mode5 in doubly-magic 48Ni or the recently discovered6

three-proton decay mode in iron-45.
Experimental observations thus suggest that away from

the valley of stability, some aspects of nuclear interactions are
amplified in exotic systems and significantly alter nuclear
properties. Although the properties of nuclei far from stabil-
ity may seem a bit esoteric, getting a handle on them could
have a profound impact on scientists’ understanding of ele-
ment production in the universe. After all, a number of im-
portant nucleosynthesis processes, especially those produc-
ing nuclei heavier than carbon and oxygen, occur in nuclei
that are very neutron rich or very neutron poor. 

Nature does not have the luxury of dealing only with sta-
ble nuclei. An understanding of how the elements were and
are made depends on an ability to calculate the reaction rates
for their production. Those rates, in turn, depend critically on
the shell structure of exotic nuclei.

Nuclei far from stability are much more readily influ-
enced by the presence of continuum, resonance, and scatter-
ing states than are their stable cousins. The influence is espe-
cially pronounced at the neutron drip line. Consider, for
example, helium-6 and lithium-11, for which two neutrons
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Solar abundances and nuclear structure

“It has been generally stated that the atomic abundance curve has an exponential decline to 
A~100 and is approximately constant thereafter. Although this is very roughly true it ignores 

many details which are important clues to our understanding of element synthesis.”  
-- Burbidge, Burbidge, Fowler and Hoyle (1957) 



An international, multi-disciplinary community is working to understand heavy element origins
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techniques. Generally, decay properties can be studied with the lowest beam intensities

and therefore for the most neutron-rich nuclei accessible, while masses require somewhat

higher beam intensities, and reaction studies are only possible closer to stability where

beam intensities are still higher. In the following we discuss various experimental

approaches in more detail.

6.1. Masses

There are many methods to determine binding energies of nuclei. In the past decade

a large number of mass measurements of neutron-rich nuclei have been performed,

approaching, and in some places reaching, the path of the r-process (Fig. 7). Until

recently, mass measurements of nuclides in the r-process path have been rare, and

measurements lag behind decay studies that have reached much more neutron-rich

nuclei. This is about to change as new facilities are coming online and developments

of experimental devices for mass measurements of exotic nuclei are completed. New

facilities that are already operating and will provide a large number of r-process masses

in the very near future include CARIBU at ANL and RIBF at RIKEN.
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Figure 7. Recent r-process motivated experiments measuring masses or �-decay half-
lives T1/2 at various radioactive beam facilities. The colors of the legend boxes match
the colors of the chart and denote a specific facility or experimental collaboration. The
pink area denotes the reach of the future FRIB facility.

Experimental mass values are not only needed as input for r-process models, but

are also essential for validating theoretical mass models since some of the r-process

nuclei are not experimentally reachable today and thus the simulations have to rely on

theoretical mass predictions. As discussed below in Secs. 7.1.1 and 7.2.1, current energy

density functionals used in DFT calculations of nuclear masses ere deficient near the
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There are numerous groups worldwide doing calculations, measurements, and observations relevant for 
heavy element synthesis!

Advances in computational simulations

Foucart+16


