Probing stellar enrichment with modern tools and refined nuclear data

RIUMF

Nicole Vassh TRIUMF Theory Group

> June 9, 2025 CIPANP UW-Madison

Theory Alliance

Where and when were the elements we see in stars produced?

Where and when were the elements we see in stars produced?

Where and when were the elements we see in stars produced?

Modeling the *r*-process in neutron star mergers

Hydrodynamic simulations provide us with a "trajectory": density / temperature / position as a function of time

Both experimental + theoretical nuclear inputs:

Masses Beta decay Alpha decay Branching ratios

> Neutron capture Fission rates / yields Neutron emission Other reaction rates (e.g.(α,n))

The need for nuclear inputs is not isolated to reactions and decays in the network:

- input initial composition dependent on EOS
- outputs are post-processed to evaluate nuclear heating, light curves, gamma spectra...

Modeling the *r*-process in neutron star mergers

decays in the network:

Hydrodynamic simulations provide us with a "trajectory": density / temperature / position as a function of time

The need for nuclear inputs is not isolated to reactions and

input initial composition dependent on EOS

Ab initio nuclear theory: new reach into r-process nuclei

Hu, Larivière, Vassh, Holt, Yeh, Arcones, Schwenk, et al. (in prep)

Physics of Nuclei

Multi-messenger events: Supernovae

SN1987A: A famous core-collapse supernova

Multi-messenger events: Neutron star mergers

GW170817 & AT2017gfo: Binary neutron star merger

Neutron-rich ejecta from neutron star mergers predicted for > 40 years

(see e.g. Lattimer&Schramm 74, Lattimer+77)

See Rosswog+13,Wanajo+14, Bovard+17, Radice+19, Perego+19, Foucart+20....

See Just+16, Miller+19, Most+21, Sprouse+23, Fernandez+23...

Post-merger disk ejecta

Over ~70 observing teams (~1/3 of the worldwide astronomical community) followed up on the merger event!

Gravitational waves

Hurt/Kasliwal/Hallinan, Evans, and the GROWTH collab.

A beacon of *in situ* lead production – Thallium-208's 2.6 MeV emission line

Kilonova emission -> IR with longer duration light curve implies high-opacity lanthanide elements

A beacon of *in situ* lead production – Thallium-208's 2.6 MeV emission line

Kilonova emission -> IR with longer duration light curve implies high-opacity lanthanide elements

A beacon of *in situ* lead production – Thallium-208's 2.6 MeV emission line

Kilonova emission -> IR with longer duration light curve implies high-opacity lanthanide elements

The 2.6 MeV gamma-ray line of TI-208 and the Th-232 decay chain

FIG. 3. Color online. The 2615 keV peak from $^{208}{\rm Tl}$ in calibration data with all detectors combined is shown in the blue points with statistical error bars.

The 2.6 MeV gamma-ray line of TI-208 and the Th-232 decay chain

And many more! e.g.: Exp. background: SNO+, Nuclear safeguards: detect shielded enriched U-232,

Nuclear medicine: Clinical imaging studies using 224Ra α -particle therapy **Geology**: aerial surveys to map out terrestrial Th,

Soil and Hydrological Sciences: studies of soil and water content....

nline. The 2615 keV peak from 208 Tl in calith all detectors combined is shown in the blue tistical error bars.

r process in neutron star mergers:

MeV gamma rays emitted from the β -decay of neutron-rich isotopes

Movie by M. Larivière

r process in neutron star mergers:

MeV gamma rays emitted from the β -decay of neutron-rich isotopes

Vassh, Wang, Larivière+24 (PRL 132, 052701)

Thallium-208: a beacon of in situ neutron capture nucleosynthesis

Nicole Vassh,^{1,*} Xilu Wang,^{2,†} Maude Larivière,^{1,3} Trevor Sprouse,^{4,5} Matthew R. Mumpower,^{4,5} Rebecca Surman,⁶ Zhenghai Liu,⁷ Gail C. McLaughlin,⁷ Pavel Denissenkov,^{8,9,10} and Falk Herwig^{8,9,10}

¹ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ²Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China ³Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada

Vassh, Wang, Larivière+24 (PRL 132, 052701)

Comparison with other nuclei with decays emitting in the 2.5-2.8 MeV energy range

Vassh, Wang, Larivière+24 (PRL 132, 052701)

Hydrodynamic simulations of r process and s process events show distinct elemental abundance patterns

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)

Hydrodynamic simulations of r process and s process
events show distinct elemental abundance patterns

Stellar abundance patterns are available for > 100 metal-poor stars

Hydrodynamic simulations of r process and s process events show distinct elemental abundance patterns

Stellar abundance patterns are available for > 100 metal-poor stars

S

Machine learning can classify patterns = *Machine learning can classify stars*

Vassh, Wang, Woloshyn, Kutchera, Larivière, Majic, Côté (submitted, 2025)

Machine learning to classify metal-poor stars as r or s:

Ba, lanthanide, and Pb abundances

Machine learning to classify metal-poor stars as r or s: Ba, lanthanide, and Pb abundances

One-class classifier (unsupervised training on r *or* s)

Stellar classifications with different ML methods							
Star	Name, Ref.	OCC-L	OCC-S	OCC-L	OCC-S	ML	JINA-
#		(Er,Pb)	(Er,Pb)	(Er,Pb)	(Er,Pb)	Overall	Base
		Trained on r		Trained on s			
20	HE1405-0822, CUI13	k,r	r,r	\$,\$	\$,\$	r	i
27	SDSSJ091243.72+021623.7, BEH10	r, t	h , h	s,s	\$,s	s	i
28	HE2148-1247, COH13	-, \ t	-, \	-,\$	-,\$?	i
30	HE0338-3945, JON06	r,\	r,k	\$,\$	\$,\$?	i
41	HE0243-3044, HAN15	r,t	r,t	\$,\$	\$,\$?	i

Machine learning to classify metal-poor stars as **r** or **s** or *i* 0.0 < [La/Eu] < 0.6

* Some metal-poor stars have been previously found to not be compatible with r or s elemental abundance ratios, points to intermediate neutron capture process (i)

- There are 2/5 i stars the one-class classifier suggests to belong in either the r or s group
- * The one-class classifier trained on r or s almost never wants to identify 3/5 i stars as r or s!

"It has been generally stated that the atomic abundance curve has an exponential decline to A~100 and is approximately constant thereafter. Although this is very roughly true it ignores many details which are important clues to our understanding of element synthesis." -- Burbidge, Burbidge, Fowler and Hoyle (1957)

An international, multi-disciplinary community is working to understand heavy element origins

There are numerous groups worldwide doing calculations, measurements, and observations relevant for heavy element synthesis!

Advances in nuclear theory

Density Functional Theory A>100 Coupled Cluster, Shell Model A<100 Exact methods A≤12 Low-mom. GFMC, NCSM interactions Lattice QCD Chiral EFT interactions (low-energy theory of QCD) CD Vacuu QCD Lagrangian 50 100 5 10 Bogner+ Neutron Number

Observational campaigns

