Dark Sector Searches with Coherent CAPTAIN Mills

Austin Schneider CIPANP 2025 - Neutrino Masses, Mixing and Interactions 2025-06-12

Coherent CAPTAIN-Mills (CCM)

- 10 ton liquid Argon (LAr) scintillation and Cherenkov detector
- Largest light-based LAr detector by photo-cathode area
- 200 8" PMTs provide 50% photo-coverage of a 5 ton fiducial volume
- 3 ton active veto region
- Mid-way through 3 year data taking period
 - \circ 1.5 × 10²² POT

CCM Historical Timeline

CCM at Lujan

- CCM is 90° off axis from the beam
- Avoids decay-in-flight backgrounds
- 23m from target

Lujan target neutrino production

Proton Beam Dumps

- piDAR provides a very clean flux of neutrinos
- Off-axis detection removes most backgrounds
- Primary background is neutrons
- Lujan's short 290 ns proton pulse allows us to remove neutrons through arrival time
 - Future upgrades will improve performance

Broad program of dark sector searches

- Axion-Like-Particles and MeV-scale QCD axion [10.1103/PhvsRevD.107.095036]
- Leptophobic MeV-scale dark matter [10.1103/PhysRevLett.129.021801]
- Light-dark-matter [<u>10.1103/PhysRevD.106.012001</u>]
- Meson Portal Dark Sector Solutions to the MiniBooNE Anomaly [<u>10.1103/PhysRevD.109.095017</u>]
- X17 ATOMKI particle [arXiv.2410.17968]
- Heavy Neutral Leptons
- Dark photons
- Scalar mediator DM

Dark sector production in target Or in shielding Or in CCM Dark sector decays

Standard Model measurements

- Electron Neutrino Charged Current Cross Section on Argon at the MeV to 10's of MeV scale
- Coherent Elastic Neutrino Nucleus Scattering (CEvNS) cross section measurement at the 10 keV to 100 keV scale

Backgrounds

- 90 degrees off axis \rightarrow no decay-in-flight contamination
- Primary backgrounds are fast neutrons
- Shielding attenuates neutrons, active veto allows us to tag neutrons entering our detector

Backgrounds

- Precise timing using measured gamma flash allows us to isolate speed of light particles
- Can measure steady state backgrounds using pre-beam region of data collection

Coherent CAPTAIN-Mills (CCM)

- Electronics have **2ns** sampling time
- Sensitive between ~100 keV and ~2 GeV
- 80% of PMTs coated in 1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) to wavelength shift LAr scintillation light
- TPB foils cover detector walls

Quality	Scintillation Light	Cherenkov Light
Intensity	~ 40k photons/MeV	~700 photons/MeV (above 100 nm)
Direction	Isotropic	Directional
Timing	Fast component (ns) and slow component (µs) EPJC-s10052-020-7789-x	Prompt (ps)
Wavelength	Spectrum peaks at 128nm	Broad spectrum

CCM light collection

- UV scintillation light is "direct" to only coated PMTs
- Cherenkov light is "direct" to coated and uncoated PMTs
- Wavelength shifted light is isotropic and reaches all PMTs after some additional delays
- Fast timing and coated/uncoated tubes allows us to identify Cherenkov light
- Provides a handle for differentiating nuclear-recoil-like and electron-like events

Basic signatures in CCM

			*••••
	Electron/Photon	Nuclear Recoil	Ŷ
Energy Range	~1 - 15 MeV	~100 keV	
Light Produced	Scintillation + Cherenkov	Scintillation / Cherenkov	
Primary background	Neutron scatters	Low energy beta decays (³⁹ Ar)	
Background signal	Scintillation / Cherenkov	Scintillation + Cherenkov	

Calibration of light propagation & timing

- Radioactive ²²Na deployed in center of detector
- 1.2 MeV de-excitation γ -ray and e⁺

- **Differentiable detector simulation** used to tune light propagation
- Challenges:
 - Large volume, contaminants in LAr, heterogeneous detector response, degenerate parameter space, poorly constrained material properties

Work by: D. Newmark [MIT]

- Long timescales: better than 5% agreement
- Short timescales: better than 10% agreement

Very early time region

Scintillation light is delayed in the **"uncoated" PMTs** ⇒ broader time distribution

Work by: D. Newmark [MIT]

Very early time region

Early time regions are dominated by **Cherenkov light** / very high purity in **"uncoated" PMTs**

Isolating Cherenkov light

- ²²Na selection: sub-MeV electrons
- Simple cut (NHit >= 1) in early time region can isolate Cherenkov light
 - 86% purity of Cherenkov light
 - 10% efficiency

v_{e} -Ar Charged Current Scattering

- Neutrinos interact in Liquid Argon
- ve CC scattering on Argon \rightarrow main reaction: $\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$
- LSND and KARMEN measured (2001) the CC Cross Section on ¹²C

CCM can make the first measurement for CC in Argon in the range of E<50 MeV

4

- CC Cross Section relevant for core-collapse supernova detection
- Useful for the new generation of LAr detectors (DUNE)

piDAR and Supernova Neutrino Energy Spectrum

Cross section prediction

neutrino energy (MeV

Total expected events in CCM

• Assuming **5 Tons** of LAr, **1.5 x 10²² POT** (2022+2023+ 2025 data), and a **75%** efficiency in the CCM detector:

Work by: M. Chávez Estrada [UNAM]

$$N_{\rm ev} = \int N_T \cdot \phi \cdot \sigma \cdot \epsilon \ dE_{\nu}$$

CC Events in CCM at 23 m, for 5 tons

of LAr, $\, E_{\! \nu}$:[0, 52.85 (= $m_{\! \mu}/2$) MeV] .

Total events/3 years	Total events/ year	Total events/ year. (Eff=75%)
150.64	50.21	37.7

- Dominant source of error:
 - Uncertainty in neutrino flux ~10% (Based on LSND-like source 7%) Derived from pions/proton production
- Detector systematic error:
 Oncertainty from energy threshold: 4% Due to 20% energy resolution

 There is an extra 0.2 x 10²² POT on disk currently (2021 data) Total events: 150.64 -> 170.72

Backgrounds for CC search

Beam related	Solution
Prompt neutrons from the beam	Shielding, time cuts in data
Neutron activation: emission of gamma, alpha, beta, neutrons, and fission products	Quality cuts, energy cut, measurement

Non beam related	Solution
Cosmogenic neutrons	PID
Michel electrons: from cosmic muons	Veto cuts, Muon identification

- W target shielded : surrounding 5m of steel, 2 m of concrete.
- CCM Shielded: surrounding walls, roof and under the cryostat Concrete, Steel, Borated Polyethylene, Lead

Work by: M. Chávez Estrada [UNAM]

27

Backgrounds for CC search: Michel electrons

Backgrounds for CC search: Michel electrons

 v_{e} -Ar CC Search

• High energy cosmic ray muons enter the detector

Decay freely (repelled by nucleus)

76% undergo nuclear capture

24% decay-in-orbit around a nucleus

CCM can measure the flux integrated cross section to within 16%

Work by: M. Chávez Estrada [UNAM]

 $v_{\rm c}$ -Ar CC Search

• High energy cosmic ray muons enter the detector

Decay freely (repelled by nucleus)

μ

76% undergo nuclear capture

24% decay-in-orbit around a nucleus

CCM can measure the flux integrated cross section to within 16%

$$\nu_e + {}^{40}Ar \to e^- + {}^{40}K^*$$

Tagging K^{*} deexcitation gammas and reconstructing direction (w/ Cherenkov light) will provide additional background rejection

Work by: M. Chávez Estrada [UNAM]

In Summary

- CCM is sensitive to a variety of BSM scenarios
 - Relevant to Short Baseline anomalies & DM scenarios
 - Electromagnetic sensitivity O(1 MeV) O(10 MeV)
- First per-event identification of Cherenkov light in Liquid Argon (& below 1 MeV)
 - Will provide improved sensitivity for BSM and Standard Model Searches
 - Including NuE CC xs measurements in the 1 50 MeV energy regime
- New searches and constraints are on the way!

Thank You For Listening!

LABORATORY DIRECTED **RESEARCH & DEVELOPMENT**

IN THE CITY OF NEW YORK

‡ Fermilab

EMBRY-RIDDLE Aeronautical University

Bonus Slides

Simulating BSM processes

Simulation and Injection of Rare EveNts (SIREN)

- A new software tool for BSM event injection
- Rich injection and reweighting capabilities
- Near arbitrary extensibility for models and detectors
- Detailed geometric modeling
- Fast and lightweight

arXiv:2406.01745 AS, N. W. Kamp, A. Wen

github.com/Harvard-Neutrino/SIREN

pypi.org/project/siren

pip install siren

Wavelength dependence

Developing Cherenkov light ID >10MeV

- Need a well known, bright source of Cherenkov light for refining the procedure
- Michel electrons from stopped cosmic ray muons have a well known spectrum and are up to 53 MeV
- Tag muons entering the detector with "<u>Cosmic Watch</u>" detectors

Cherenkov light with Michel electrons

 ρ

W-

- Cosmic ray muon is tagged by external plastic scintillator detector
- Muon enters the detector causing bright ______ scintillation, and coming to a stop (1/10 muons)
- Stopped muon subsequently decays, creating a Michel electron with energy up to 53 MeV
- Michel electron produces Cherenkov and scintillation light
- Uncoated tubes are efficient at picking up the early Cherenkov light

Cherenkov light with Michel electrons

- First demonstration of event-by-event identification of Cherenkov light in liquid Argon
- Working now to incorporate Michel electrons into the calibration
- Will provide an important reference point for developing Cherenkov light based particle discrimination

Na22 Simulation

Na22 Data

Neutrissimos - Oscillation and decay

Introduce an MeV-scale heavy neutral lepton with a transition magnetic moment, or neutrissimo

Upscattering from SM neutrinos to neutrissimos occurs in transit from beam

Subsequent decay of neutrissimo to a photon can produce the MiniBooNE signature

Heavy Neutral Leptons

- Heavy neutral leptons
- Using dipole portal transition model [https://doi.org/10.1103/PhysRevD.107.055009]
- Considering HNL production from upscattering in shielding and detector materials
- Detection from ~10 MeV photon

; 44

CC simulation in **CCM**

Stages of simulation:

- Primary Vertex injection (SIREN + MARLEY)
- Production of **particles** product of CC interaction inside the Argon (MARLEY)
- Energy depositions in the detector and photon propagation (Geant 4)
- PMT response

•All the simulation is being processed by the HPC-Chicoma LANL and subMIT clusters

•Each of these stages are connected through the **CCMAnalysis framework**

•Can **port** Injection (SIREN) and interaction with Ar (MARLEY) **to other detectors**

MARLEY CC Simulation (cont.)

• Energy spectra of some of the secondary particles (e, gammas, neutrons, K40)

• Spatial Distribution (XY) in the CCM detector

Data Selection

- If neutron rate is too high post-cuts, we can leverage timing to reduce backgrounds
- Defining two ROI: early and late

Early ROI length: 178 ns Late ROI length: 5802 ns

Statistical Analysis (MC) (cont)

10-3

10000 11000 12000 13000 14000 15000 16000 Time (ns)

20

0

