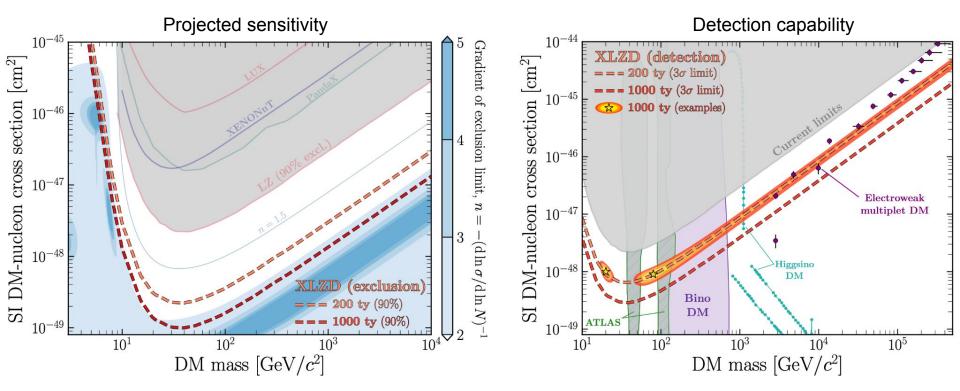
Ov2β sensitivity of the XLZD rare-event observatory Based on 2410.19016

Chami Amarasinghe (UCSB) On behalf of the XLZD collaboration CIPANP – June 2025



1

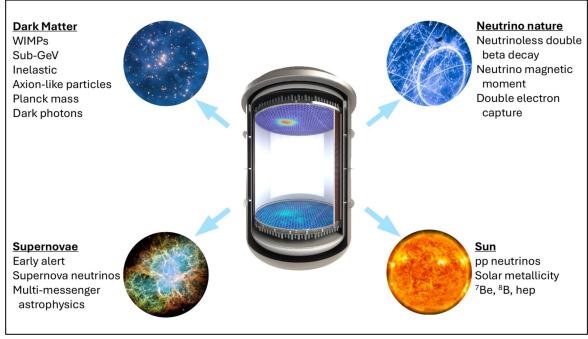
Liquid xenon detectors as definitive tools for WIMP searches

Based on the XLZD design book: 2410.17137

A multi-tonne liquid xenon time projection chamber will capable of reaching the neutrino fog and constraining DM parameters

Large scale enables a broad rare-event program

Liquid target is scalable


- LZ, XENONnT, PANDAX demonstrating dual-phase TPC at 10t scale

Background controls

- Continuous purification
- Self-shielded fiducial volume
- Material selection

LXe TPC response

- Good energy resolution
- ER/NR discrimination
- Low energy threshold
- Multiple scatter rejection

Physics reach of liquid xenon rare event observatory

The XLZD Collaboration

76 institutions

17 countries

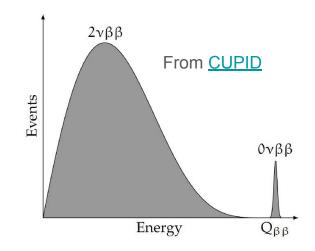
440+ members

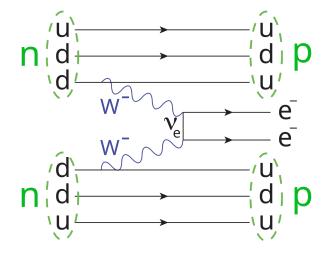
Next generation liquid xenon rare event observatory

- select best options from LZ, XENONnT, DARWIN RnD
- combine expertise in radiopurity, HV, cryogenics
- risk management using LZ, XENONnT, and test setups

XLZD sensitivity to $0v2\beta - 2410.19016$ studied scenarios:

- Active volume 60t baseline (extendable to 80t pending Xe market)
- Nominal and optimistic cases for
 - Energy resolution, background reduction, site, ...

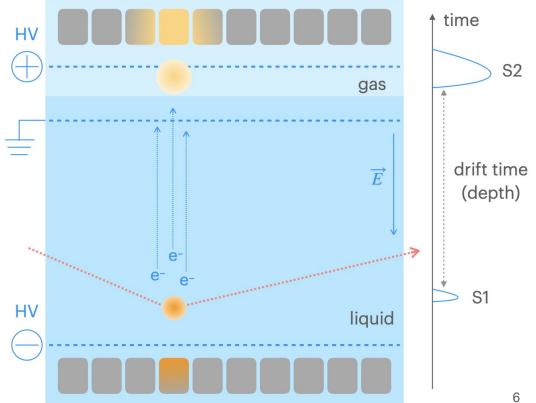




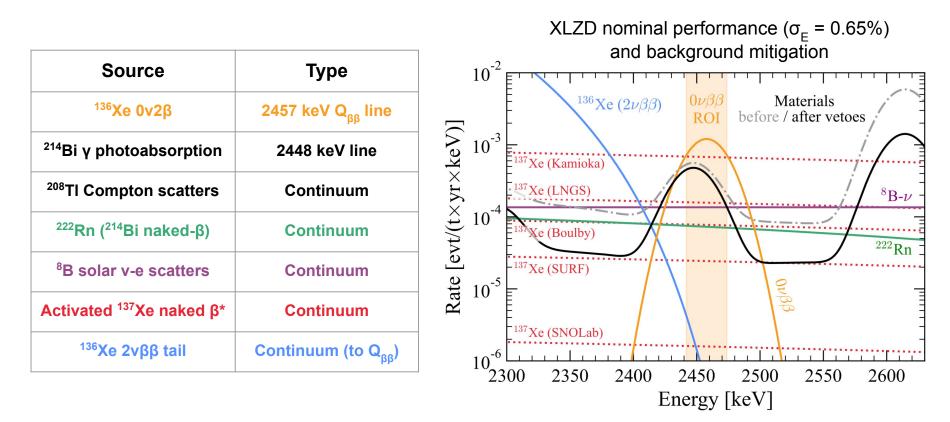
¹³⁶Xe 0v2b decay and signature

- ¹³⁶Xe 2v2β decay occurs and is background to WIMP searches
- Hypothesized 0v2β process
 - Violates lepton number and B-L
 - Implies neutrinos are Majorana
- $0v2\beta$ at the tail of $2v2\beta$

For ¹³⁶Xe, $\mathbf{Q}_{\beta\beta}$ = 2457.83 ± 0.37 keV


Signal reconstruction in LXe TPCs

Best energy resolution from S1 + S2. Near Q_{RR}


- LZ: σ/μ = 0.67% <u>JINST 18.04 C04007</u>
- XENON1T: σ/μ = 0.80% <u>EPJ C 80 1-9</u>
- XLZD targets:
 - Nominal 0.65% 0
 - Optimistic 0.60% Ο

Good position resolution \rightarrow multiple scatter rejection

- Z-position from time between S1 and S2
 - 3mm resolution nominal 0
 - 2mm optimistic <u>Saltao thesis</u> 0
- (X, Y) from S2 light pattern on top PMT array

Components of search space

Background mitigation summary

Common mitigation for all background sources is good energy resolution!

Source	Туре	Further mitigation	
¹³⁶ Xe 0v2β	2457 keV Q _{ββ} line	_	
²¹⁴ Bi γ photoabsorption	2448 keV line Radiopure materials, self-shielding		
²⁰⁸ TI Compton scatters	Continuum	Radiopure materials, self-shielding, veto	
²²² Rn (²¹⁴ Bi naked-β)	Continuum Radiopure materials, distillation, Bi–Po tag		
⁸ B solar v-e scatters	Continuum	Irreducible	
Activated ¹³⁷ Xe naked β^*	Continuum	Deep site, shielding	
¹³⁶ Xe 2vββ tail	Continuum (to Q _{ββ})	Irreducible	

Material radiopurity

Minimize γ & β backgrounds (²¹⁴Bi and ²⁰⁸TI)

Techniques:

- Strict material choices, e.g.
 - a. low-radioactivity PMTs
 - b. custom field-shaping resistors
 - c. cleanest batches of materials from \underline{LZ} , <u>XENON</u>, and other assays
- Clean assembly protocols

Performance assumptions:

- Realistic: 25% of LZ's external background rate
 - based on current assays
- Optimistic: 10% of LZ level

	m LZ (967 kg $ imes$ 1000 d)		$\begin{array}{c} \text{XLZD} \\ (8.2\text{t}\times10\text{yr}) \end{array}$	
Component	Nominal	Reduced	Projected	
TPC PMTs	2.95	0.98	0.61	
PMT structures	2.75	0.54	0.33	
Field-cage resistors	2.46	0	0	
Internal sensors	1.81	0.22	0.14	
PMT bases	1.52	0.39	0.24	
Cryostat	1.26	0.82	0.51	
PMT cables	1.01	0.16	0.10	
Field-cage rings	0.97	0.40	0.25	
OD tank supports	0.73	0	0	
OD foam	0.71	0	0	
Skin PMTs	0.69	0.06	0.04	
Other skin parts	0.68	0.05	0.03	
Other components	3.56	1.42	0.88	

²¹⁴Bi 2448 keV gamma SS counts

LZ projection from *Phys. Rev. C. 102:014602*

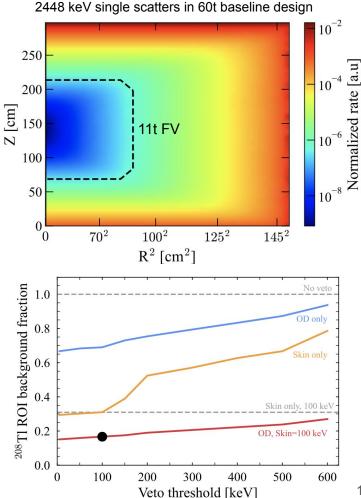
5.05

21.10

Total

3.15

Self-shielding and veto systems

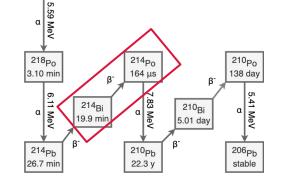

Reject external γ-ray backgrounds (²¹⁴Bi and ²⁰⁸TI)

Fiducialize to escape the ²¹⁴Bi 2448 keV peak

- LXe high density 10 cm Compton interaction length
- 60t design: 8.2t (nominal) and 11t (optimistic)
- 80t design: 13.6t (nominal) and 17.2t (optimistic)

Veto system to reject ²⁰⁸TI Compton background

- Xenon skin and outer-detector (100 keV thresholds)
- Tag multiple-scattering Compton or associated gamma
- 83.3% rejection of ²⁰⁸Tl in ROI


Further reducing β backgrounds

²¹⁴Bi β-decay

Cosmogenic ¹³⁷Xe production

• Further reduction from Bi-Po tagging

²¹⁴Po is α emitter – tag β + α sequence and veto event

Performance assumptions:

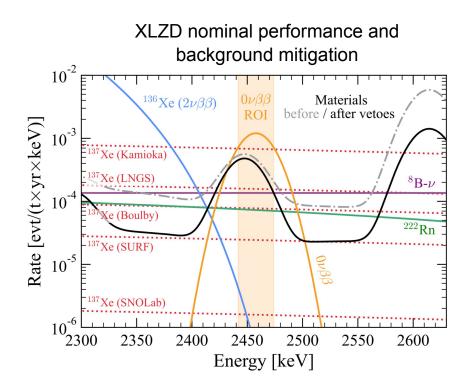
222_{Rn} 3.82 d

- Nominal: 99.95% Bi–Po tagging efficiency
- Optimistic: 99.99%

Siting matters: deeper \rightarrow less muons \rightarrow less activation

Assume laboratory neutrons can be fully mitigated

Performance assumptions:

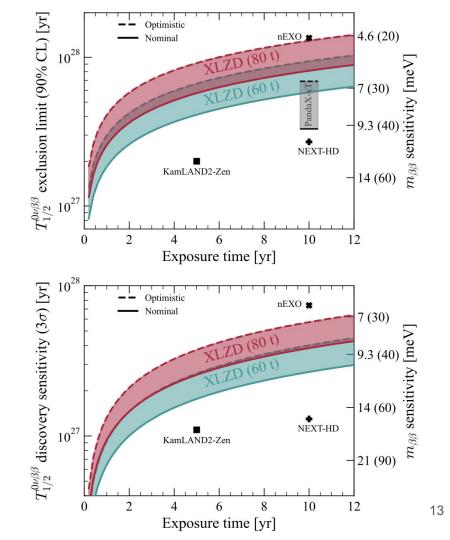

- Nominal: LNGS (3600 m.w.e.)
- Optimistic: SURF (4300 m.w.e)

	D	epth	μ flux	137 Xe rate	SS ROI rate
Site	[m]	[m w.e.]	$[/(m^2 \cdot d)]$	$[/(t \cdot yr)]$	$[\mathrm{evt}/(\mathrm{t}{\cdot}\mathrm{yr}{\cdot}\mathrm{keV})]$
SNOLAB	2070	5890	< 0.3	0.007	1.29×10^{-6}
\mathbf{SURF}	1490	4300	4.6	0.142	$2.72{ imes}10^{-5}$
Boulby	1300	3330	14.6	0.404	$7.73 { imes} 10^{-5}$
LNGS	1400	3800	29.7	0.822	1.57×10^{-4}
Kamioka	1000	2700	128	3.54	6.78×10^{-4}

Summary of projection scenarios

- Nominal
 - existing detector performances,
 - LNGS installation,
 - 25% of LZ gamma background rates
- Optimistic
 - improved detector performance,
 - SURF installation,
 - ambitious gamma reduction (10%)

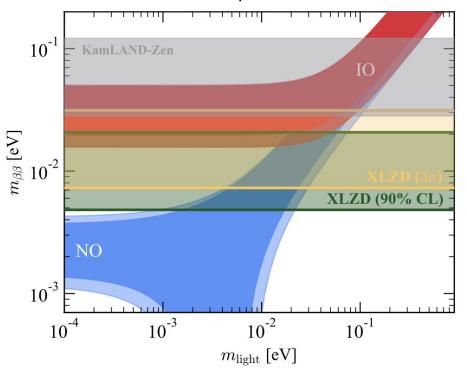
	Scenario		
Parameter	Nominal	Optimistic	
222 Rn concentration [μ Bq/kg]	0.1		
BiPo tagging efficiency [%]	99.95	99.99	
External γ -ray [% LZ]	25	10	
Installation site	LNGS	SURF	
Energy resolution [%]	0.65	0.60	
SS/MS vert. separation [mm]	3	2	


Sensitivity projections

Counting experiment in an optimized fiducial volume

Sensitivity is primarily driven by target mass

Impact of design drivers on 3 σ discovery sensitivity (Loss from reverting each optimistic input to nominal, all else fixed)


- Gamma background: 15.5%
- Experiment depth: 11%
- BiPo tagging efficiency: 6%
- Single-/multiple-scatter discrimination: 4.3%
- Energy resolution: 2.5%

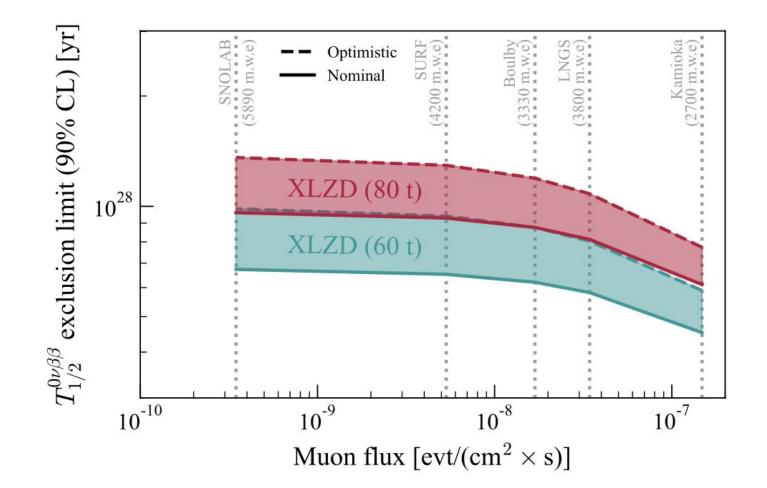
Sensitivity to effective Majorana mass

XLZD probes neutrino mass ordering, assuming only Majorana neutrino exchange

Band widths set by uncertainties of nuclear matrix elements

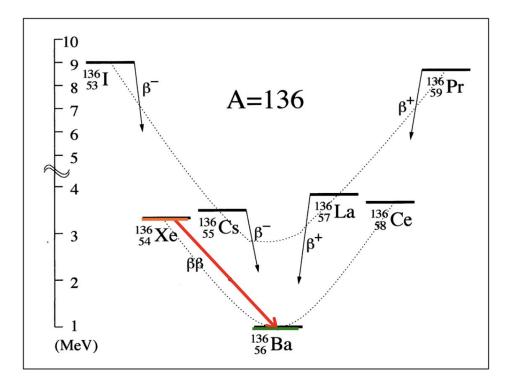
XLZD 80t optimistic scenario

Conclusions

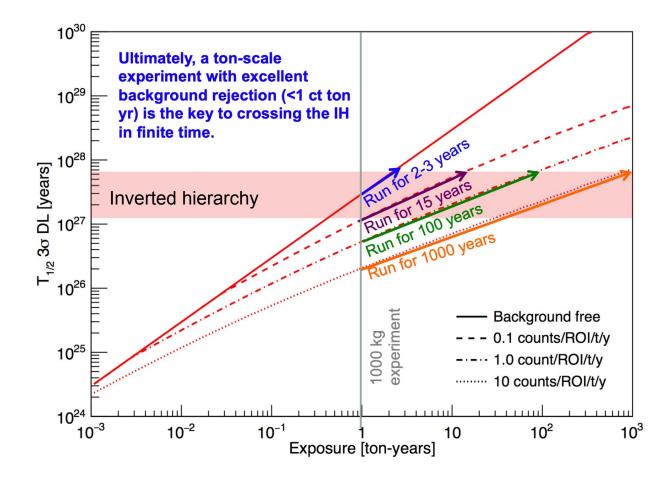

XLZD is a scalable rare-event observatory — with world-leading discovery potential for both dark matter and $0\nu\beta\beta$

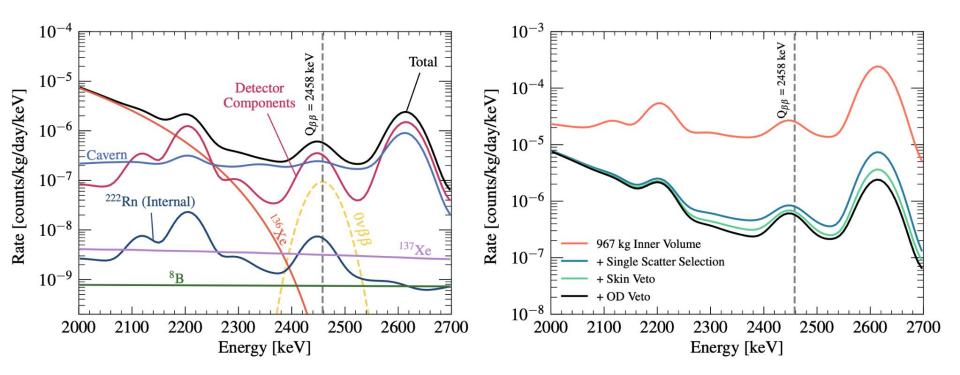
XLZD builds on mature dual-phase xenon technology

- 60–80t of active mass
- good background control and resolution


With natural xenon 80t optimistic scenario for XLZD can

- Discover $0\nu\beta\beta$ at 3σ for half-lives up to 5.7×10^{27} yr
- Exclude half-lives up to 1.3×10²⁸ yr at 90% CL
- Exclude the inverted neutrino mass ordering and explore the normal ordering




A = 136 isobar

Physics of 0v2b TASI: https://arxiv.org/pdf/2108.09364

LZ 0V2B simulation

Material screening

- Voltage grading resistors EXO200 <u>https://arxiv.org/pdf/1202.2192</u>
- PMT base capacitors XENON1T https://arxiv.org/pdf/1705.01828
- Low radioactivity PMTs -

https://indico-tdli.sjtu.edu.cn/event/1861/contributions/11609/attachments/451 7/7175/XeSAT2024_PMT12699.pdf

- Cleanest PTFE, stainless steel, copper, Kovar, and Kapton
 - LZ assay: <u>https://arxiv.org/pdf/2006.02506</u>
 - XENON1T assay: <u>https://arxiv.org/pdf/1202.2192</u>