Measuring the Weak Charge of the Electron: The MOLLER Experiment

June 12, 2025

Kent Paschke

UNIVERSITY of VIRGINIA

INTERSECTIONS - CIPANP 2025

New Physics with Precision at Low Energies

Low Q² offers complementary probes of new physics at multi-TeV scales

EDM, g_{μ} -2, weak decays, β decay, $0\nu\beta\beta$ decay, DM, CLFV...

Parity-Violating Electron Scattering: Low energy weak neutral current couplings (SLAC, Jefferson Lab, Mainz)

Heavy mediators = contact interactions

For any **fermion** and **handedness** combination, reach characterized by mass scale Λ , coupling g

Kent Paschke

New physics search "mass scale": quoted with $g^2 = 4\pi$

Intersections - CIPANP 2025

Electron Scattering and Parity-violation

Scattering cross-section $|\mathcal{M}_{\gamma}|$ $\sigma =$

$$A_{PV} = -\frac{mE \frac{G_F}{\sqrt{2\pi\alpha}}}{4\sin^2 \Theta} \frac{4\sin^2 \Theta}{(3+\cos^2 \Theta)^2} Q_W^e} \qquad Q_W^e$$

Kent Paschke

 Incident beam is longitudinally polarized •Change sign of longitudinal polarization •Measure fractional rate difference

Intersections - CIPANP 2025

Madison, Wisconsin

 ~ 0.0435

Comparing at the weak mixing angle

Kent Paschke

Intersections - CIPANP 2025

3

MOLLER: Ultra-high precision measure of Q_W^e

A_{PV} ~ 32 ppb $\delta(A_{PV}) \sim 0.8 \text{ ppb}$

 $\delta(Q^{e_{W}}) = \pm 2.1 \% (stat.) \pm 1.1 \% (syst.)$

Search for new flavor diagonal neutral currents

Unique (purely leptonic) new physics reach

Best contact interaction reach for leptons at low OR high energy To do better for a 4-lepton contact interaction would require the Giga-Z factory, linear collider, neutrino factory or muon collider

Examples of model sensitivity:

Kent Paschke

JNIVERSITY

/IRGINIA

Best Collider $\delta(\sin^2\theta_W)$:

A_I(SLD): 0.00026 A_{fb}(LEP): 0.00029 **CMS(prelim): 0.00031**

MOLLER projected:

 $\delta(sin^2\theta_W) = \pm 0.00024 \ (stat.) \pm 0.00013 \ (syst.)$

 $\rightarrow \sim 0.1\%$ Matches best collider (Z-pole) measurement

Erler et al., Ann.Rev.Nucl.Part.Sci. (2014)

Intersections - CIPANP 2025

Measuring A_{PV}

Elastic signal focused on detector -800 -4000 -2000 16000 18000 20000

Rapid (1kHz) measurement over helicity reversals

Kent Paschke

Intersections - CIPANP 2025

Madison, Wisconsin

A_{PV} ~ 32 ppb with goal of 2% statistical, 1% systematic uncertainty

High luminosity and acceptance <u>Møller Rate ~ 130 GHz</u>

- 125cm, 4.5kW LH₂ target
- 65 µA beam current at 11 GeV
- 85% polarization
- "large" acceptance (~100% of high FOM kinematics)

Control Noise <u>91 ppm at 960 Hz</u>

- Low noise detectors and readout electronics
- Rapid beam helicity flip
- Beam and target stability
- Precision monitoring and calibration

JLab: precision instrument with 25 years of high precision PVES experiments

MOLLER collaboration: 40+years of experience including E158, Qweak, PREX/CREX

MOLLER

Integrate time

- <u>344 beam days (~3-4 calendar years)</u>
- Radiation resistance for materials and electronics

Controlling Systematic Uncertainty

- background monitoring
- optics / acceptance calibration
- polarimetry
- Beam control, monitoring and calibration
- "spin reversal" tools

Intersections - CIPANP 2025

Madison, Wisconsin

Pion Detectors SAMs

High Precision Measurement

Contributions to \sigma_{pair} - "Pair width"

Parameter	Random Noise (65 μ A)
Statistical width (0.5 ms)	\sim 82 ppm
Target Density Fluctuation	30 ppm
Beam Intensity Resolution	10 ppm
Beam Position Noise	7 ppm
Detector Resolution (25%)	21 ppm (3.1%)
Electronics noise	10 ppm
Measured Width (σ_{pair})	91 ppm

$$\sigma_{A_{expt}} = \frac{\sigma_{pair}}{\sqrt{N_{pair}}}$$

Experimental design driven by these goals Statistical Uncertainty: Measure A_{expt} with precision ~2% **Systematic Uncertainty:** Measure and/or minimize all systematic error sources so their individual contributions are <1%, resulting in statistics limited experiment

JNIVERSITY VIRGINIA

Uncertainty budget for APV

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Norm. of the Kinematic Factor	0.5
Beam (second moment)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
Beam (position, angle, energy)	0.4
Beam (intensity)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	0.3
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.15
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Linearity	0.1
Total systematic	1.1

Combined
$$\frac{\delta A_{PV}}{A_{PV}} = 2.4 \%$$

Intersections - CIPANP 2025

Madison, Wisconsin

MOLLER Spectrometer Cutaway

Kent Paschke

Intersections - CIPANP 2025

Madison, Wisconsin

MOLLER Spectrometer Concept

FOM optimized for COM 90° ± 30°

Acceptance defining collimator

- selects scattering angle
- blocks 50% of azimuth
- collimates exhaust beam

Azimuthal field from toroidal magnet separates ee, ep, and line of sight (γ) at detector plane

Kent Paschke

Isolate E-θ correlation for ee scattering onto detector

radial flux distribution

Intersections - CIPANP 2025

4.5kW LH₂ cryotarget high power, high stability

Kent Paschke

Intersections - CIPANP 2025

Madison, Wisconsin

Spectrometer Detail

Kent Paschke

Intersections - CIPANP 2025

Madison, Wisconsin

Flux Distribution at Main Detectors

Radial / Azimuthal binning - measures backgrounds under the Møller peak

"Irreducible" Backgrounds

radiative background processes from target

Madison, Wisconsin

Intersections - CIPANP 2025

Detector Package

Integrating mode: for asymmetry measurement **Counting mode:** very low beam current, counting and/or tracking for calibration

JNIVERSITY VIRGINIA

Integrating Detectors:

For asymmetry measurement

- Thin Quartz "Main Detectors"

optimized for resolution, segmented for extracting background contributions

- Shower Max detectors

less resolution, different weighting and sensitivity than main detectors

- Pion Detectors

After heavy absorber, sample pion background to provide pion asymmetry subtraction

GEM Tracking Detectors:

low rate calibration runs

Auxiliary detectors- LAM, SAM, Scanner for calibrations and cross-checks

Intersections - CIPANP 2025

Primary A_{PV} measurement uses an array of thin quartz detectors

- 6 radial "rings"
- 224 tiles total, over 7 septants

PMT + base, electrons operate in integrating mode and counting mode (for calibration)

lifetime

Rates / PMT: 4 MHz - 4 GHz Total rate (Møller + ep): ~220 GHz

Kent Paschke

Main Detector

Intersections - CIPANP 2025

Tracking Detectors

GEM rotating mount

GEM chambers prototyped, in production Testing via x-ray source and cosmic ray

Kent Paschke

JNIVERSITY VIRGINIA

At very low currents (few nA) tracking calibration runs will be used to

- study response function of integrating detectors
- benchmark spectrometer optics and acceptance
- test for background sources

Blocker collimator to study backgrounds from scattering of exhaust beam

Sieve collimator for known "point source" to benchmark spectrometer optics

Intersections - CIPANP 2025

LH2 Target

Kent Paschke

Intersections - CIPANP 2025

Helicity Correlated Beam Properties

MOLLER requirements

Keeping beam asymmetries small

Beam	Required cumulative	Systematic	
Property	helicity-correlation	contribution	• Spe
Intensity	< 10 ppb	$\sim 0.1~{ m ppb}$	• Bea
Energy	< 1.4 ppb	$\sim 0.05~{ m ppb}$	• "slo
Position	< 0.6 nm	$\sim 0.05~{ m ppb}$	• feed
Angle	< 0.12 nrad	$\sim 0.05~{ m ppb}$	
Spot Size	< 10 ppm	$\sim 0.1~{ m ppb}$	

- m transport optimization
- dback

Polarized Source

JNIVERSITY VIRGINIA

- High intensity, high polarization through photoemission from GaAs photocathode
- Rapid-flip of beam helicity by laser polarization flip
- Pockels cell to flip laser polarization
- Beam must look the same for the two polarization states
- Photocathode: analyzing power for linear light

cial techniques with the polarized source laser optics

w reversals" that flip the sign of beam asymmetries

Beam correction analysis

- Two calibration techniques
 - beam modulation for calibration
- linear regression Demonstrated precision and accuracy in the PREX-2 analysis

RTP Pockels cell

Goal: 2kHz flipping, ~10 µs transition

- •Optimized RTP cell developed, in use since 2019
- •Using E-field gradients to control non-uniformities
- •New versions improve performance and reliability

Intersections - CIPANP 2025

Polarimetry Goal: 0.4% with two, independent measurements which can be cross-checked

Møller Polarimeter

- "high field" iron target well-known magnetization at saturation
- Coincidence of identical particles low background
- QQQQD spectrometer optimized to suppress Levchuk correction uncertainty

Compton Polarimeter

- Detection of backscattered photons and recoil electrons from laser light
- Independent photon and electron analyses are possible
- New publication: dP/P = 0.36% https://doi.org/10.1103/PhysRevC.109.024323

Both systems have important upgrades underway (detectors, target, DAQ, analysis, and simulation studies). The Møller polarimeter is closer to ready for high precision at 11 GeV, with smaller and less crucial upgrades.

Kent Paschke

Intersections - CIPANP 2025

MOLLER Schedule and Outlook

First exploration of the current concept in 2007, first proposal in 2009. It's been a long road

Expected schedule:

- Fall 2025 Dec 2026: Assembly in Hall A
- Jan 2027: commissioning
- Late 2027: First physics publication expected
 - -A_T transverse single spin asymmetry
 - A_{PV} result, matching E158 precision

Project (fabrication/assembly) fully funded, mostly allocated IRA funding for DOE managed project, + NSF + CFI / Research Manitoba / NSERC

Remaining (political) risks:

JNIVERSITY VIRGINIA

- approximately 4 calendar years required to complete running, with usual operations at JLab - Collaboration relies on DOE-NP and NSF research funds (also NSERC, but that isn't in question)

Intersections - CIPANP 2025

GEM tracking chambers

UVa and SBU GEMs in production, qualification

Kent Paschke

UVA

SBU

Cosmic test stand at JLab

Intersections - CIPANP 2025

thin quartz assembly modules in cosmic test stand

Detectors / electronics

Main detector assembly in Mainz test beam

Kent Paschke

shower-max detector

low-noise electronics (Manitoba)

Intersections - CIPANP 2025

Spectrometer Components

TM1 Complete

Kent Paschke

Lead Pion Donut

Detector beampipe Frame Weldment

Intersections - CIPANP 2025

Beam pipes elements

Bellows 1 and 2

Bellows 3

Detector Pipe with Neckdown window

Kent Paschke

Bellows 4

Bellows 5

Bellows 7

Drift Pipe

SAM Pipe

Intersections - CIPANP 2025

Summary

Electroweak physics studies with PVES are a powerful tool in the search for new physics

of TeV, with reach into new physics phase space that cannot otherwise be accessed.

MOLLER is starting fabrication, to start assembly this fall and begin running early 2027

Kent Paschke

- MOLLER, designed for ultra-high precision, will search for new interactions from 100 MeV to 10s

Intersections - CIPANP 2025

