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Hans Christian Andersen: “Physics Beyond the Standard Model"

Weak Interaction

Detector

New Interaction or particles (BSM)

The Princess and the Pea
P2 Goal: 
• Hit fixed protons with R&L electrons – measure 

difference in scattering rates
• Measure QW

p and the weak mixing angle sin2(θW) 
and to extremely high precision

Nature
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The relative strength between the weak and electromagnetic interaction is determined by  
the weak mixing angle: sin2(θW)

Qe(p) = +e
electric charge of the proton 

QW(p) = 1 – 4 sin2 θW
weak charge of the proton

QW(n) = - 1 

sin2 θW: a central parameter of the standard model accessible through the weak charge 

The role of the weak mixing angle
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Running of the weak mixing angle

3 %

Universal quantum corrections: can be absorbed into a scale dependent, “running“ sin2θeff or sin2 θW(µ)

The relationship between QpW and sin2!w is modified at the 1-loop level and is dependent on 
the energy scale at which the experiment is carried out 

Ultra High Precision Measurement
Determination of the weak mixing angle with 0.15% accuracy, mass scale 45 TeV
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High Precision: 
Sensitivity to new physics Beyond the Standard Model

Extra Z
Mixing with
Dark photon or 
Dark Z

Contact interaction
EFTs

New
Fermions

Sensitivity to new physics at a scale from 70 MeV up to 50 TeV
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Running sin2 θW and Dark Parity Violating Z

Bill Marciano

MOLLER Science Overview

New (Low Energy) Physics Examples

9

Unique Opportunity: Purely Leptonic Reaction at Q2 << MZ2

Heavy Photons   
(A’ mixed with Z0): 

The Dark Z

Many different scenarios give rise to effective 4-electron contact interaction amplitudes: significant discovery potential

Doubly-
Charged 
Scalar

Lepton Number Violation

5 σ for hee ~ 1 and MΔ ~ 1 TeV  

H. Davoudiasl, H-S. Lee and W. Marciano

room for 10 σ effects 

Cirigliano et al
Phys.Rev. D70 (2004) 075007

B. Dev et al
PhysRevD.98.055013

Specific 
Scenario 
for Type-II 
SeeSaw

Specific 
Scenario 
folding in 
Cs APV and 
g-2 (e and !)
M. Caddedu et al
2104.03280

BSM: The Dark Z
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σ ∝ |Mγ + Mweak|2 ~ |Mγ|2 + 2Mγ(Mweak)* +… 

Problem: The weak interaction is weak:  Mweak << Mγ

Formulation PVES Experiment

Electron Scattering and Parity-violation

Kent Paschke October 6, 2017 !X

p p

p p

p

p p
•Incident beam is longitudinally 
polarized
•Change sign of longitudinal 
polarization
•Measure fractional rate difference

γ Z0

γ 2 �
��MZ

��
��M�

��

e e

� =
��M� +MZ

��2
Scattering cross-section

e e

Z0

“Electroweak” models predicted 
- interference of electromagnetic and weak amplitudes
- values for electron & quark weak neutral current 

coupling

e- : Right Handed

", Z0

e-

", Z0

e- : Left Handed

Reverse space + Keep Spin Same = Reverse spin + Keep Space Same

Reverse Spin and 
measure rate 
asymmetry

Solution: Harness the fact that the weak force is parity violating & spin doesn’t reverse under P

L = r x p à (-r)x(-p) = r x p = L ! : L à L

Interference between electromagnetic and weak neutral current 
amplitudes gives rise Parity violating asymmetry
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P2: Parity violating electron proton scattering 
at MESA/Mainz

!"#$%& =
( $⃗& *( $⃖&
( $⃗& ,( $⃖& = −. /012

3 456 78 9 − : 74 + !<

Magnetic spectrometer
Cherenkov detector
Read-out electronics

Data acquisition

Beam 
polarisation .
Polarimetry

Momentum transfer < 74>
Tracking system

Low Beam Energy, Low Q2 Theory:
QED corrections
EW corrections (two loop)
Hadron structure : 74 Form factor,
Strangeness form factors
Measure: 
Axial form factor

Cross section asymmetry !"#$%&

False asymmetries: control of 
target and accelerator

Caryn Palatchi, Indiana University, CIPANP 2025 

Aep=-28 ppb  +- ?Aep= 0.5 (1.8 %) After 11,000 h
?sin2 @W/sin2 @W= 0.15 %



• Aep=-28 ppb  +- !Aep= 0.5 (1.8 %) After 11,000 h
• !sin2 "W/sin2 "W= 0.15 %

EM FF data plus PVES 
Strange quark studies 
constrain B well at low Q2

Caryn Palatchi, Indiana University, CIPANP 2025 
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Optimization of PV Asymmetry measurement

AxialWeak

Aux. measurem. 
backward angle

Kinematics: Low Q2

FF, Axial, Strangeness 
Suppressed



• MESA facility tailored to the 
experimental program

• P2 Start Commissioning in 2026

Mass scales up to 45 TeV

• Aep=-28 ppb  +- !Aep= 0.5 (1.8 %) After 11,000 h
• !sin2 "W/sin2 "W= 0.15 %
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LH2 
Target

Shielding

Solenoid Magnet

Tracking 
Detectors

Integrating 
Cherenkov 
Detectors

Main components of P2 presently constructed in industry and assembled at MESA
F. Mass



Beyond Qweak: MESA/P2 at Mainz

Kent Paschke June 29, 2016Elba XIV

• rate up 100x, Q2 down 10x: same FOM of Apv and 2x FOM on Q2 
• reduced sensi>vity to radia>ve correc>ons and proton structure

Qweak: proton structure F contributes ~30% to 
asymmetry, ~2% to δ(QWp)/ QWp

Negligible for significantly lower Q2

 X

• Ebeam = 155 MeV, 25-45o  
• Q2 = 0.0045 GeV2 
• 60 cm target, 150 uA, 104 hours, 

85% polariza>on 
• APV = -28 ppb to 1.5% (0.4ppb) 
• δ(sin2θW) = 0.13% 

Development underway 
Funding approved by DFG

  

Beam energy = 155 MeV
Moller,      θ є [ 0°, 90°]
Elastic e-p, θ є [25°, 45°]
Elastic e-p, θ є [ 0°, 90°]

Magnetic field:
0.6 T

Raytrace simulations in the magnetic field

Shielding

Quartz

  

Beam energy = 155 MeV
Moller,      θ є [ 0°, 90°]
Elastic e-p, θ є [25°, 45°]
Elastic e-p, θ є [ 0°, 90°]

Magnetic field:
0.6 T

Raytrace simulations in the magnetic field

Shielding

QuartzMESA: New research machine based on ERL will also support a high-current 
extracted beam at 100-200 MeV suitable for a PV experiment

P2-experimental principle
Solenoid Field

Elastic ep’s

Target

Integrating
Detector Array

Moller scattering e’s
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High Power Liquid H2 Target

• 60 cm beam interacting zone
• Operating temperature < 20 K
• Coolant gasous He at ~ 10 K

• Required cooling power 
up to 4000W

• High, turbulant flow

F. Mass
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Super Conducting Magnet

• Superconducting Magnet 
(NbTi)

• FOPI yoke
• Operating Temperature < 6K
• B-field of 0.6T at 640 A
• Maximum field of 0.7 T 
• Power consumption of 2800 W 

(4V and 700 A)  
• Quench protection

• Outer Diameter 3.3m
• Inner Diameter 2.4 m

F. Mass
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Central Scattering Chamber

F. Mass
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Fused Silica Cherenkov Detector

• Detector ring consists of 72 wedged fused
silica bars

• Cover angle range of 25° to 45°
• Hit rate 1011 Hz
• Integrating measurement

• Single event detection
• Q² measurement
• Special PMT base developed

• Collaboration with Manitoba
• All PMTs are delivered and characterisation

ongoing
• All fused silica bars delivered and measured

F. Mass
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• Cherenkov detector ring consisting of 72 fused silica bars
- Covering full azimuth 25° - 45° polar angle
- Integrating detector

Quartz glass detector concept

• Extended experimental study
• Quartz glass, PMTs, reflector
• Radiation hardness

F. Mass



Caryn Palatchi, Indiana University, CIPANP 2025 19

Full GEANT4 simulation

P2-Detector response

F. Mass
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Integrating Mode Readout System

• Voltage divider & preamp
• Twinax cable for differential 

signal
• ADC module
• Evaluation board – FPGA module
• Sampling ADC developed by U. 

Manitoba and TRIUMF
(Michael Gericke)

• 16 channel prototype for tests in 
Mainz

F. Mass
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µPIX Tracking Detector

Assembling robot MuPix10 sensor
µPIX Tracking Forward Detector

• High resolution tracking for Q² measurement
• Covers at least one fused silica detector
• 4 segments with 2 double layer detectors
• 50 µm HV-MAPS sensors
• Resolution for track momentum ~ 2 MeV/c

Tracking Calibration

F. Mass

F. Mass

F. Mass
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Backward Tracking Detector

• Use 3 planes of Micromegas
detectors

• Position measurement with
detector
• Determine momentum and

vertex

• 18 detector modules with 1280 channels each
• Cooperation with CEA Saclay

F. Mass



“Never change more than one thing at a time”
Physical Experiment: Systematics

Any change in the polarized beam, correlated to helicity reversal, can be a potential source for a false asymmetry

Araw = Adet - AQ + aDE+ SbiDxi
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HCBA AF =10% Aphys
=2.4 ppb

Δ" 0.2 eV
Δ# 1.35 nm
Δ$ 1.35 nm
Δ%# 0.76 nrad
Δ%$ 0.76 nrad

Beam Asymmetries Goals

Indiana U. Pockels cell for MESA: 

&'()*+ =
- )⃗+ /- )⃖+
- )⃗+ 1- )⃖+ = −3 4567

8 9:; <= > − ? <9 + &A
False asymmetries: 
control of target and
accelerator

• RTP cell, 8HV system, position difference 
control via E-field gradients
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MESA Source for P2

2.5mm

1mm

2mm

10mm

10mm

10mm

10mm

In development:
• 16HV system – vertically mounted
• +Spot size asymmetry control 
• With 3-side panels control E-field 1st and 2nd moments

!"#$%& =
( $⃗& *( $⃖&
( $⃗& ,( $⃖& = −. /012

3 456 78 9 − : 74 + !<
False asymmetries: 
control of target and
accelerator
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P2 parity violation experiments at Mainz: program

P2@MESA
Hydrogen

P2@MESA
Carbon

P2@MESA
Calcium,Lead [MREX]

!sin2 "W/sin2 "W= 0.15 % !sin2 "W/sin2 "W= 0.6 % (0.3%) will improve the neutron skin 
thickness by a factor of two

Aux. measurem. backward angle Aux. measurem. backward angle In addition measurements of 
transverse asymmetries

Electron Spin transverse 
• Two photon exchange amplitude in elastic electron proton scattering
• Two photon exchange amplitude in electron nucleus scattering

Electron spin longitudinal (PVES)
• Weak vector charge of the proton
• Weak axial form factor  of the proton
• Weak vector charge of the neutron (Carbon) 
• Neutron Skin of Ca and Lead (MREX)

Strategic series of measurements from large asymmetries to ultimate precision
Much more physics from P2 program: Neutron Skin in heavy nuclei, weak charge in light nuclei
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• Parity violating electron scattering: 
“Low energy frontier” comprises a sensitive test of the standard model 

complementary to LHC with a sensitivity to new physics up to 50 TeV
• Determination of sin2(θW) with highest precision 0.15% (similar to Z-pole), test of running of 

sin2(θW), mass scale 45 TeV
• P2-Experiment (proton weak charge) at MESA
• Solenoid delivery in November 2024, all critical components delivered, installation of magnet 

yoke started, start commissioning in 2026
• New MESA energy recovering accelerator at 155 MeV, target precision is 2 % in weak proton 

charge  i.e.  0.15% in sin2(θW),
• Sensitivity to new physics at a scale from 70 MeV up to 50 TeV
• Strategic series of measurements from large asymmetries to ultimate precision
• Final accuracy corresponds to a factor 3 improvement over Qweak-experiment
• Much more physics from P2 program: Neutron Skin in heavy nuclei, weak charge in light nuclei

Summary


