JUNE 2025

DETERMINING THE PROTON'S SIZE WITH MUSE

PAUL E REIMER

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics under contract no. DE-AC02-06CH11357

How to Measure the Proton's Charge Radius

What is $\langle r angle^2$

What are we measuring?

Define

 $\langle r \rangle^2 \equiv 6 \frac{dG_E}{dQ^2} \bigg|_{Q^2 = 0}$

Note this is a definition. See G. Miller *Phys.Rev.C* 99 (2019) 3, 035202

Classical motivation of definition

- Mott Cross Section: point scattering of structureless spin-1/2 particles
- But the proton is not structureless
- The structure functions represent that blob
- Cross section adding a form factor

$$\begin{array}{ccc} G_E & \stackrel{\text{classic}}{\approx} & \int e^{iQr}\rho(r)d^3r \\ & \stackrel{\text{classic}}{\approx} & 1 - \frac{1}{3!}Q^2\langle r\rangle^2 + \frac{1}{5!}Q^4\langle r\rangle^4 + \cdots \\ & \frac{\frac{d\sigma}{d\Omega}|_{\text{lab}}}{\frac{d\sigma}{d\Omega}|_{\text{Mott}}} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau}\cos^2\frac{\theta}{2} + 2\tau G_M^2\sin^2\frac{\theta}{2} \right) \end{array}$$

How to Measure the Proton's Charge Radius

Elastic Scattering

Measure the cross section at as low of Q² as possible and extrapolate the slope

$$\frac{\left.\frac{d\sigma}{d\Omega}\right|_{\text{lab}}}{\left.\frac{d\sigma}{d\Omega}\right|_{\text{Mott}}} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau}\cos^2\frac{\theta}{2} + 2\tau G_M^2\sin^2\frac{\theta}{2}\right)$$

What probe?

Electron or muon?

Atomic Spectroscopy

- Quantum Mechanics—solve the hydrogen atom.
- Coulomb field is distorted because the proton is not a point charge.
- This shifts atomic levels—Measure atomic levels.

$$\therefore \qquad \bigcirc \qquad 2 \text{ keV } \gamma$$

$$1 \text{ S}$$
Hydrogen atom?

The proton RMS charge radius measured with Electrons: 0.8751 ± 0.0061 fm (CODATA2014) Muons: 0.8409 ± 0.0004 fm

PROTON'S SIZE VS PROBE AND METHOD (2014)

	Spectroscopy	Scattering	
Electron	Large 0.876(8)	Large 0.877(6)	
Muon	Small 0.8409(4)	Unknown Ongoing measurements MUSE and Amber	

MEASUREMENTS OF THE PROTON'S CHARGE RADIUS

CODATA'06 (2008) Bernauer (2010) Pohl (2010) Zhan (2011) CODATA'10 (2012) Antognini (2013) CODATA'14 (2015) Beyer (2017) Fleurbaey (2018) Sick (2018) Mihovilovič (2019) Alarćon (2019) Bezginov (2019) Xiong (2019) Grinin (2020) CODATA'18 (2021) Brandt (2022)

Muonic Hydrogen, Atomic Hydrogen, Electron Scattering, CODATA, Global Analyses

MEASUREMENTS OF THE PROTON'S CHARGE RADIUS

Muonic Hydrogen, Atomic Hydrogen, Electron Scattering

U.S. DEPARTMENT of ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

E-P FORM FACTOR DATA

MANY EXPLANATIONS HAVE BEEN OFFERED

- Proton structure issues in theory
 - Off-shell proton in *two-photon* exchange leading to enhanced effects differing between µ and e
 - Hadronic effects different for µp and ep: e.g. proton polarizability (effect ~m_l⁴)

https://www.particlezoo.net/collections/leptons

- Imaginative Physics (BSM) differentiating µ and e
 - Lepton universality violation, light massive gauge boson
 - Constraints on new physics *e.g.* from kaon decays (TREK@J-PARC)

5x comparative mass

https://www.particlezoo.net/collections/leptons

THE MUON PROTON SCATTERING EXPERIMENT (MUSE)

- ~63 MUSE collaborators from 24 institutions in 5 countries
- Located at the Paul Scherrer Institut in Villigen, Switzerland
- PiM1 beamline: secondary beam with $e^{+/-}$, $\mu^{+/-}$ and $\pi^{+/-}$ at few MHz flux

MUSE'S CONTRIBUTION TO THE SOLUTION

- Simultaneous measurement of e⁺p, μ^+p and of ep, μ^-p elastic scattering
- Sub-percent precision
- 3 overlapping beam momenta
- Low Q² kinematics

Quantity		Coverage		
Beam Momenta		115, 160, 210 MeV/c		
Scattering Angles		20-100°		
Q ² range	е	0.0016-0.0820 (GeV/c ²) ²		
	μ	0.0016-0.0799 (GeV/c ²) ²		

Goals

- Independent and combined determination of the charge form factor and Proton Charge Radius in $e^{\pm}p$ and $\mu^{\pm}p$ elastic scatterings
- μ^+ , μ^- and e^+ , e^- comparisons for Two-Photon Exchange (TPE) studies.

PSI PROTON ACCELERATOR COMPLEX

NATIONAL LABORATORY

BEAM PARTICLE IDENTIFICATION

- Flight path 22.76 m
- Accelerator Frequency 50.6 MHz
 Pulses every 19.75 ns

Moment (GeV/c)	115	160	210	
	Time-of-Flight (ns)			
е	75.9	75.9	75.9	
μ	103.1	91.0	85.0	
π	119.4	100.8	91.2	

π M1 BEAM LINE SIMULATIONS

Simulations were verified with optics studies, e.g. dispersion measurements at the IMF

PRC 2

(2022

0552

arXiv: 105 Π

2

09

09508 Ω

MUSE SPECTROMETER

MUSE SPECTROMETER SLIGHTLY LESS SCHEMATICALLY

MUSE SPECTROMETER SLIGHTLY LESS SCHEMATICALLY

EXPERIMENTAL BIAS REMOVAL—BLINDING

Randomly selected scattered tracks are removed from the data

•
$$P = f(\theta) \frac{3-\theta}{3}$$
 with $f(\theta) = 0.2(A + 0.3 \cos B\theta)$

• Where A and B are randomly chosen numbers $A, B \in [0.25, 1.0]$

Calorimete Scattered Particle Scintillator (SPS) **BEAM HODOSCOPES—BH** Beam Monitor (BM) Straw-Tube Tracker (STT) First element which beam Electron ToF between BH planes C and D encounters in MUSE 18000OF data Detector Essential element in ToF Gaus. $\sigma = 0.122 \text{ ns}$ 16000Hodoscope (B) 14000Scintillato 12000langes J in Counts 10000 Counts 1 Plane: C 6000 400020000 -1.5-0.50.51.5 $^{-1}$ 0 TOF (ns) UPSTREAM • Excellent ToF resolution $\sigma_{\Delta T} = \sqrt{\sigma_A^2 + \sigma_B^2} = 122 \text{ ps}$ $-\sigma_T = \frac{1}{\sqrt{2}} \ 122 \approx 86 \ \text{ps}$

U.S. DEPARTMENT of ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DETECTOR PERFORMANCE: TRACKING

Two tracking sub detectors:

- 4 GEMs track incoming beam
- 2 sets of x and y Straw Tube Trackers on each arm
 - -5 planes of straws in each direction (x, y)

40

30

20

10

0

-10

-20

-30

-40

DETECTOR PERFORMANCE: TRACKING

Calorimeter

Beam Monitor (BM)

Scattered Particle Scintillator (SPS)

Particle Identification by β_{OUT} vs Path Length

Simulation of ToF from BH to SPS

Distance (cm)

U.S. DEPARTMENT of ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne

Particle Identification by β_{OUT} vs Path Length

- $\beta_{\text{electron}} \stackrel{\text{\tiny def}}{=} 1$
- β_{μ} and β_{π} both larger than expected.
 - Possible time walk correction due to pulse height differences

$$\left. \frac{dE}{dx} \right|_{\pi} \ge \frac{dE}{dx} \right|_{\mu} \ge \frac{dE}{dx} \Big|_{e}$$

RADIATIVE CORRECTIONS

- Strategy described in L. Li, S. Strauch, et al, *Eur. Phys. J.* A 60 (2024) 1, 8.
- Measure hard photon brems. with Calorimeter at 0°
 - On loan from A2 @ MAMI
 - W. Lin et al. To appear in NIM A, arXiv:2408.13380.

SUMMARY OF SYSTEMATIC UNCERTAINTIES IN MUSE

Table 1: Estimated MUSE relative systematic cross section uncertainties for the shape of angular distributions, the ratio of muon and electron scattering cross sections, and the ratio of + charge to - charge cross sections.

Uncertainty	angular distribution	μ/e	+/-
	(%)	(%)	(%)
Detector efficiencies	0.1	0.1	0.1
Solid angle	0.1	small	small
Luminosity	small	small	small
Scattering angle offset	0.2	small	small
Multiple scattering correction	0.15	small	small
Beam momentum offset	0.1	0.1	0.1
Radiative correction	$0.1~(\mu),~0.5~(e)$	0.5	$1\gamma { m small}$
Magnetic contribution	0.15	small	small
Subtraction of μ decay from μp	0.1	0.1	small
Subtraction of target walls	0.3	small	small
Subtraction of pion-induced events	small	small	small
Beam PID / reaction misidentification	0.1	0.1	0.1
Subtraction of μ decay from ep	small	small	small
Subtraction of ee from ep	small	small	small
TOTAL	$0.5\;(\mu),0.7\;(e)$	0.5	0.2

MUSE RUN PLAN

- 2021: Worked on recovering from COVID-19
- 2022: Completed 5 months of data taking
 - Took data in all experimental kinematics on LH₂
- 2023: Completed 5 months of awarded beam time
- 2024: Completed 5 months of awarded beam time
 - Collected ~75 % of expected total statistics
- **2025**: Now running 5 months of beam time to complete the data taking needed to achieve physics goals
 - Refining the analysis procedure
 - Detectors, target checked, refurbished and re-calibrated
 - Start of the beam time now

BLINDED, VERY PRELIMINARY 2023 DATA

EXPECTED STATISTICAL UNCERTAINTY

SUMMARY

The value of the mean squared charge radius of the proton is to be determined

 r_p [fm] - compare $\mu^{\pm}p$ and $e^{\pm}p$ elastic scattering

0.8

0.82

0.84

0.86

- apparatus is well understood
- Much of the data is already recorded

0.88

0.9

- NATIONAL LABORATORY

CODATA'06 (2008)

Bernauer (2010) Pohl (2010) Zhan (2011)

Antognini (2013) Beyer (2017)

Fleurbaey (2018) Mihovilovič (2019) Bezginov (2019) Xiong (2019) Grinin (2020)

Brandt (2022)