



# Scintillating Developments in the Directional Detection of Sub-GeV DM

### CARLOS BLANCO



### Direct detection



Carlos Blanco - 2025

### Luminescent Detectors



Fluorescence (Singlet transitions) Energy Scale Momentum Scale  $\Delta E \approx \mathcal{O}(eV) \quad q \sim \alpha m_{\chi} \approx \mathcal{O}(keV)$ 

#### Disambiguation\*

**Scintillation**: Initial O(keV) recoil produces *many* ionized/excited states. These quickly deexcite, producing photons.

**Fluorescence**: Initial O(eV) recoil produces *single* excited state, which deexcites, producing single photon.

Carlos Blanco - 2025

### Fluorescence with DM

fluorescence spectra 1.0 Absorption/emission Probability 0.8 ntensity (Normalized) Absorption 0.6 0.4 0.2 Jar. 0.0 250 300 350 400 450 500 λ (nm)

: Chromophore:



Detector volume ~1L

Decreasing energy (E)  $\rightarrow$ 

Probability for the photon to free stream  $\Phi_{\rm FB} \sim (1 - a_{xx})$  e.g. molecular crystals:  $\Phi_{\rm FB} \approx 65\%$ Carlos Blanco - 2025

### Overview: new materials for Direct Detection

#### Recoil-induced *fluorescence* (radiative deexcitation)

#### ML to explore vast data of material space



• :unit that de-excites by emitting a photon

#### Could be:

- Nanostructures (quantum dots)
- Molecules in ordered crystal
- Hybrid material (QDs in Molecular matrix)





Generative ML models will identify novel materials that maximize signals

# First Experimental Setup



[CB, Collar, Kahn, Lillard: 1912.02822]

# Results: EJ-301

(Contact interaction)

(Long-range interaction)



[CB, Collar, Kahn, Lillard: 1912.02822]

About 6 months from theory development to results!

## The Field in Context



Many materials are proposed to probe the sub-GeV Space

In 2017:

Short term (2 years)

- Medium term (2-5 years)

*Long* term

## **Outlook and Potential Reach**



Present day:

Experimental results

#### - Zero-background projection

## **Outlook and Potential Reach**





Experimental results

#### - Zero-background projection

## **Outlook and Potential Reach**

#### [CB, Collar, Kahn, Lillard: 1912.02822]



# The obstacle Backgrounds

4 orders of magnitude of potential reach awaiting

Pound (kg) for Pound (kg) molecules produce about as much signal as e.g. Si.

Carlos Blanco - 2025

### **Directional Detection**



Effective dark matter "wind" from relative motion



Change in relative orientation between detector and dark matter wind leads to *daily* modulation

### **Directional Detection**



Credit: Benjamin Lillard



## First Guess: Trans-Stilbene





Carman, et.al. '18 (J. of Crystal Growth)

De-localized and planar network of double bonds

Molecular planes oriented in crystal lattice

Large optical-quality crystals

# Sensitivity & Reach



Assuming realistic backgrounds Exclusion w/o modulation Discovery potential w/ mod. Exclusion w/ modulation

Modulating signals improve sensitivity by about two orders of magnitude and provide the potential for discovery

\*1kg of t-stilbene can probably be found within a few blocks of this room

# Daily Modulation

#### (Contact interaction)



(Long-range interaction)

[CB, Kahn, Lillard, McDermott: 2103.08601]

Modulation amplitude remains as high as 10% even at the highest masses. This is due to the fundamental anisotropy of the molecular form factor.

$$f_{\rm RMS} = [5\% - 25\%]$$

$$N_{\sigma} \sim f_{\rm RMS} \sqrt{N_{\rm events}}$$

# Looking for Daily Modulation





Different trajectories through rotation angles give distinct waveforms and phases.

So we can use the same crystal in many orientations or many different crystals!

Credit: Benjamin Lillard - https://github.com/blillard/vsdm Carlos Blanco - 2025

# Characterizing t-stilbene

### Calibrate at mg-scale Deploy up to kg-scale



Credit: Dane Johnson Freedman Group (MIT)

Natalia Zaitseva (LLNL)



# **Experimental Deployment**

#### **DIANA\***

Daily Modulation in an Intrinsically Anisotropic Array



**Collaboration:** FermiLab, U. Toronto, MIT, UIUC, U. Oregon, Penn State Carlos Blanco - 2025



Many crystal samples can be read out by a single skipper CCD.

## **Experimental Status**

Credit: Nora Hoch (MIT) & Dan Baxter (FermiLab)



CAD: Crystal holder



Prototyping is underway at FermiLab.

# **Collaboration:** FermiLab, U. Toronto, MIT, UIUC, U. Oregon, Penn State

Carlos Blanco - 2025

## **Experimental Status**

#### Credit: Nora Hoch (MIT) & Dan Baxter (FermiLab)



Printed Prototype

3D printed crystal sample holder to test mounting and orientations.

#### **Collaboration:** FermiLab, U. Toronto, MIT, UIUC, U. Oregon, Penn State Carlos Blanco - 2025

### Astro-Skipper CCDs as Readout Taking pictures of crystals with a very sensitive CCD

Skipper CCD Measurements of trans-Stilbene



Daniel Baxter, Alex Drlica-Wagner, Edgar Marrufo, Brandon Roach

### CCD Measurement of Signal Detecting fluorescence with Skipper CCDs



The fluorescence spectrum of t-Stilbene w/ single-photon precision Credit: Dan Baxter, Edgar Marufo, & Brandon Roach (FermiLab)

Carlos Blanco - 2025

# $\begin{array}{l} Measuring \ Anisotropy \\ \ Electron \ Impact \rightarrow Cathodoluminescence \end{array}$



Collect spectral map

of microcrystals

Photodetector

e<sup>-</sup> beam

Mirror

**Preliminary** observation of directionality in experiments using electron impact



Credit: Yoni Kahn (U Toronto) + Abbamonte Group(UIUC) + Dane Johnson (MIT)

Evaluate damage

from e<sup>-</sup> beam

Carlos Blanco - 2025

Determine crystal

morphology with SEM

### Calibrating Anisotropic Materials Calibration of Anisotropy via Electron Impact



### The Molecular Migdal Effect(s) Sensitivity to Nuclear Recoils

#### Center of mass recoil (CMR) effect

#### Caused by center of mass motion





Non-adiabatic coupling (NAC) effect

#### Caused by relative motion



COM recoil effect is the molecular analog of the semiclassical Migdal effect

 $P_{CMR} \sim \frac{m_e}{M_{mol}}$ 

Suppressed by kinematic factor due to moving the whole molecule.

Blanco '22: 2208.09002

NAC caused by effects beyond Born-Oppenheimer approximation

$$P_{NAC} \sim \frac{m_e}{M_N}$$

Suppressed by kinematic factor due to moving a single atom.

# Directional Molecular Migdal Effect

[CB, Harris\*, Kahn, Lillard, Perez-Rios: 2208.09002]



Predicted rate changes by up to 80% throughout the day.

The daily modulation phase is mass dependent.

Persistent daily modulation at large dark matter mass is generically predicted for the molecular Migdal effects.

We predict that the same class of molecules that make good directional detectors for electron scattering will also be ideal for nuclear scattering because of the directional molecular Migdal effects.

### The Molecular Migdal Effect(s) Sensitivity to Nuclear Recoils

#### (Contact interaction)



Si rate is entirely due to non-adiabatic processes. [Esposito & Rocchi 2505.08864]

*Center of mass recoil* effect is predicted to be subdominant at all masses.

- *Non-adiabatic coupling* effect is predicted to dominate due to favorable kinematic factor.

Simplest molecular models already competitive. Is there an optimal molecular target?

[CB, Harris\*, Kahn, Lillard, Perez-Rios: 2208.09002]

# Finding Optimal Targets

Problem: Chemical space is unreasonably large

How many molecules possible with C, O, N, F, H?

< 9 atoms: 100s of Thousands (DFT Computable)</pre>

< 30 atoms: 100s of Billions (Intractable)

...toluene has 15, xylene has 18, t-stilbene has 26

Method

1. Look for known favorable properties - *cheminformatics* 

2. Extra(intra)polate onto new molecules – *machine learning* 

### ML for DM Direct Detection

Property predictionMolecular GenerationEnergies & Matrix elementsSample latent space  $\rightarrow$  new molecules

#### Small molecules : Using exhaustive database (< 9 atoms) Characterize neural nets

 $\rightarrow$  Prove it's possible to learn from small subsample

#### Large molecules: Sparse dataset up to 10s of atoms Scale architecture

→ Generate candidate molecule *shortlist* 

#### Dataset of energies + oscillator strengths:

PubChemQ: a dataset of ~3M organic molecules *computed* using Density Functional Theory

### ML for DM Direct Detection

Molecular Space:Variational AutoencodersEnergies & Matrix elementsSample latent space  $\rightarrow$  new molecules

Discrete and sparse data space



### **Regression Model in Action**



FIG. 19. We show the density of predicted values vs true values for the transition energies of our validation set, with a red line that corresponds to the threshold placed on the predicted value. The Histogram shows the distribution of true values for molecules whose predicted value is above the threshold.

### **Regression Model in Action**



FIG. 20. We show the density of predicted values vs true values for the oscillator strength of our validation set, with a red line that corresponds to the threshold placed on the predicted value. The Histogram shows the distribution of true values for molecules whose predicted value is above the threshold.

### ML for DM Direct Detection







[C. Cook, CB, J. Smirnov 2501.00091]

Carlos Blanco - 2025

### Clustering: Results



FIG. 7. Top 20 molecular motifs ranked by score. Note that certain atoms can be substituted by [C,N,O,S] as long as the structure remains isoelectronic. Dotted lines indicate that the bond could be a double or single bond.

#### [C. Cook\*, CB, J. Smirnov 2501.00091]

In hindsight: On the right track



### New Target Materials



[C. Cook\*, CB, J. Smirnov 2501.00091]

Carlos Blanco - 2025

Credit: Dane Johnson (MIT)



1) We have done an extremely effective job looking for WIMPs above a GeV, now we must look beyond.

2) By developing the formalism that describes the interaction between dark matter and molecules, we can develop detection strategies capable of *delving deep* and *searching wide* across the dark matter parameter space.

arXiv: 1912.02822

### Fluorescence: Binary Scintillators





# Electron Recoil: Charge Signal



Electron scattering  $\Delta E_r = (m_\chi^2/m_{\rm T}) \times 10^{-6}$ 

$$\Delta E \sim \mathcal{O}(\text{few eV}) \left(\frac{m_{\chi}}{1 \,\text{MeV}}\right)^2$$

What has such transition energies?

- Semiconductor band gaps
- Maybe atomic ionization

 $|\psi_i\rangle \sim \psi_{\rm STO}(r_\beta) |\psi_f\rangle \sim e^{ik \cdot r}, r \gg a_0$ 

Electrons in crystals (exciton generation)

 $|\overline{\psi_i}\rangle \sim \overline{u_v(r)}e^{ik'\cdot r}$ 

Electrons in atoms (ionization)

$$\sim u_c(r)e^{ik\cdot r}$$

Carlos Blanco - 2025

### Trans-Stilbene

| s     | Platt Symbol    | Symmetry           | $\Delta E \left[ \mathrm{eV} \right]$ | Configuration amplitudes |                    |                     |                    |
|-------|-----------------|--------------------|---------------------------------------|--------------------------|--------------------|---------------------|--------------------|
| $s_1$ | $^{1}B$         | $B_u$              | 4.240                                 | $d_{7,8} = 0.94,$        | $d_{4,11} = -0.24$ |                     |                    |
| $s_2$ | ${}^{1}G^{-}$   | $B_u$              | 4.788                                 | $d_{7,10} = 0.53,$       | $d_{5,8} = 0.53,$  | $d_{6,11} = 0.37,$  | $d_{4,9} = -0.37$  |
| $s_3$ | ${}^{1}G^{-}$   | $A_g$              | 4.800                                 | $d_{7,9} = 0.53,$        | $d_{6,8} = 0.53,$  | $d_{5,11} = 0.37,$  | $d_{4,10} = -0.37$ |
| $s_4$ | $^{1}(C,H)^{+}$ | $A_g$              | 5.137                                 | $d_{7,11} = 0.41,$       | $d_{5,9} = -0.41,$ | $d_{6,10} = -0.41,$ | $d_{4,8} = -0.59$  |
| $s_5$ | ${}^{1}H^{+}$   | $B_u$              | 5.791                                 | $d_{5,10} = 0.54,$       | $d_{6,9} = 0.54,$  | $d_{7,12} = 0.33,$  | $d_{3,8} = 0.33$   |
| $s_6$ | ${}^{1}G^{+}$   | $A_g$              | 6.264                                 | $d_{7,9} = 0.68,$        | $d_{6,8} = -0.68$  |                     |                    |
| $s_7$ | ${}^{1}C^{-}$   | $A_g$              | 6.013                                 | $d_{7,11} = 0.66,$       | $d_{4,8} = 0.54,$  |                     |                    |
| $s_8$ | $^{1}G^{+}$     | $\overline{B}_{u}$ | 6.439                                 | $d_{7,10} = 0.65,$       | $d_{5,8} = -0.65$  |                     |                    |

Table 1: The first eight excited states  $s_{n=1...8}$ , with their energy eigenvalues  $\Delta E(s_n)$  with respect to the ground state and coefficients  $d_{ij}^{(n)}$  as calculated by Ting and McClure.

$$|s_n\rangle = \sum_{i,j>i} d_{ij}^{(n)} |\psi_i^j\rangle,$$

$$\int_{ij} |d_{ij}^{(n)}|^2 = 1.$$

$$f_{g \to s_n}(\vec{q}) = \left\langle \psi_{s_n}(\vec{r}_1 \dots \vec{r}_{14}) \left| \sum_{m=1}^{n} e^{i\vec{q} \cdot \vec{r}_m} \right| \psi_G(\vec{r}_1 \dots \vec{r}_{14}) \right\rangle$$

$$= \sum_{ij} d_{ij}^{(n)} \left\langle \psi_i^j \left| e^{i\vec{q} \cdot \vec{r}} \right| \psi_G \right\rangle$$

$$= \sqrt{2} \sum_{ij} d_{ij}^{(n)} \left\langle \Psi_j(\vec{r}) \right| e^{i\vec{q} \cdot \vec{r}} |\Psi_i(\vec{r})\rangle.$$
Carlos Blanco - 2025

14

### Daily Modulation: Light Mediator



Same as previous figures (top) for a light mediator DM form factor  $F_{\rm DM} =$  $(\alpha m_e/q)^2$ . Here, the contour plots show  $F_{\rm DM}^2 |f(s_1)|^2$  which appears in the rate integrand; the scattering is dominated by the smallest kinematicallyallowed q. **Top:** Molecular form factors with  $q_z = 0$  and rate modulations for  $m_{\chi} = 2$  MeV. **Bottom:** Molecular form factors with  $q_z = 0$  and rate modulations for  $m_{\chi} = 100$  MeV.



# Local DM Phase Space



Baxter, D., et al. "*Recommended conventions for reporting results from direct dark matter searches*." The European Physical Journal C 81.10 (2021): 1-19.

Lin, Tongyan. "Sub-GeV dark matter models and direct detection." SciPost Physics Lecture Notes (2022): 043.