

INSTITUTE for NUCLEAR THEORY

ANEW CLASS OFTHREE NUCLEON FORCES

MARIA DAWID

UNIVERSITY of WASHINGTON

With Vincenzo Cirigliano Wouter Dekens Sanjay Reddy

NUCLEAR FORCES AND THEIR ROLE

Describes nuclear systems

- every property of nuclei
- the equation of state of dense neutron-rich matter in neutron stars,
- probe new physics

This might be described by Effective Field Theories

EFFECTIVE FIELD THEORY

EFFECTIVE FIELD THEORY

CHIRAL PERTURBATION THEORY

- **Symmetries**: Lorentz invariance, spontaneously broken **chiral symmetry** of QCD Lagrangian $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- **Degrees of freedom: Goldstone bosons** (π , K, η), and **matter fields** e.g., nucleons (n, p), and other light particles (e, μ , ν , γ)
- **Expansion parameter** ۲
 - $\frac{p}{\Lambda}, \frac{m_{\pi}}{\Lambda},$

 - Counting rules $\partial \sim p, m_q \sim p^2$

$$\begin{aligned} \mathscr{L}_{\pi\pi} &= \frac{1}{2} \partial_{\mu} \pi \cdot \partial^{\mu} \pi - \frac{1}{2} M_{\pi}^{2} \pi^{2} + \frac{1}{2F_{\pi}^{2}} (\pi \cdot \partial_{\mu} \pi) (\pi \cdot \partial^{\mu} \pi) + \dots \\ \mathscr{L}_{\pi N} &= N^{\dagger} (i \partial_{0} + \frac{\overrightarrow{\nabla}^{2}}{2m}) N - \frac{1}{2F_{\pi}^{2}} N^{\dagger} \tau \cdot (\pi \times \dot{\pi}) N + \frac{g_{A}}{2F_{\pi}} N^{\dagger} \vec{\sigma} \tau \cdot \overrightarrow{\nabla} \pi N + \dots \\ \mathscr{L}_{NN} &= -\frac{1}{2} C_{S} (N^{\dagger} N) (N^{\dagger} N) - \frac{1}{2} C_{T} (N^{\dagger} \vec{\sigma} N) (N^{\dagger} \vec{\sigma} N) + \dots \end{aligned}$$

Coefficients fixed from pion decay, $F_{\pi} \simeq 92$ MeV

Infinite sum

POWER COUNTING

Amplitude

$$\mathscr{A} \sim \left(\frac{p}{\Lambda}\right)^{\nu}$$

$$\nu = \sum_{i} V_i d_i - 2I_p - I_n + 4L$$

 I_n - internal nucleon lines, I_p - internal pion lines, V_i - vertices of type I, d_i - number of derivatives L - loop

MANY BODY POTENTIAL

Weinberg's idea: Use chiral EFT to calculate $V_{eff} = \sum (all \ irreducible \ diagrams)$

Irreducible diagram = diagram that is not generated through iterations in the dynamical equation

$$H | \psi \rangle = E | \psi \rangle$$
 $H = \sum_{i} T_{i} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$

V is symmetric under permutation $V_{ij} = V_{ji'}$ and invariant under all QCD symmetries

Generate observables by solving the Lippmann-Shwinger equation:

$$T = V_{eff} + V_{eff} G_0 T$$

MANY BODY POTENTIAL

Weinberg's idea: Use chiral EFT to calculate $V_{eff} = \sum (all \ irreducible \ diagrams)$

Irreducible diagram = diagram that is not generated through iterations in the dynamical equation

NUCLEAR FORCES

Hierarchy of nuclear forces up to N5 LO in ChiPT. Solid lines represent nucleons and dashed lines pions. Entem, Machleidt, Y. Nosyk, (arXiv:1703.05454)

TWO BODY POTENTIAL

$$M_N \sim Q \sim m_{\pi}$$

Leading order:

 $\nu = \sum V_i d_i - 2I_p - I_n + 4L$

THREE BODY POTENTIAL N2LO

$$\nu = \sum_{i} V_i d_i - 2I_p - I_n + 4L$$

- Interaction range increases with the number of pions
- LEC's determined by
 - c_i 's known well and determined by **pion-nucleon** scattering data. Independent of multi nucleon information. **Errors are small** because there are no 3NF short-distance contributions.
 - c_D , c_E from Nd scattering, light nuclei and tritium β decay

THREE BODY POTENTIAL N3LO

- Consists of
 - Loop diagrams with LO vertices
 - Tree graphs involving relativistic corrections
- No new LECs

Bernard, Epelbaum, Krebs, Meissner '08,'11; Ishikawa, Robilotta '07,

W.

ISSUES WITH POWER COUNTING

For
$${}^{1}S_{0}$$
 channel:
 $\sim m_{\pi}^{2}C_{0}^{2}\left(\frac{1}{\epsilon} + \log\mu^{2}\right)$
 $\mathscr{D} = D_{2}\bar{N}N\bar{N}N < \chi_{+} > = D_{2}\bar{N}N\bar{N}Nm_{\pi}^{2}\left(1 - \frac{1}{2F_{\pi}}\pi^{a}\pi^{b}\delta^{ab} + \mathcal{O}\left(\frac{\pi^{4}}{F_{\pi}^{4}}\right)\right)$

Weinberg implies:

To absorb the divergencies:

D. Kaplan, M. Savage, M. Wise (ArXiv: 9605002)

W

l

ISSUES POWER COUNTING

 \mathcal{C}_0

For ${}^{1}S_{0}$ renormalization requires:

$$\frac{d}{d \ln \mu} \left[\frac{m_{\pi}^2 D_2}{\tilde{C}_0^2} \right] = \frac{g_A^2 m_{\pi}^2 m_N^2}{64\pi^2 f_{\pi}^2},$$

 C_0

D. Kaplan, M. Savage, M. Wise (ArXiv: 9605002)

3NF DUE TO D_2 operator

V. Cirigliano, M. D, W. Dekens, S. Reddy (ArXiv:2411.00097)

NUCLEAR FORCES

In Weinberg power counting scheme, diagrams with D_2 operator appear in N^5LO

W

NUCLEAR FORCES

3NF DUE TO D_2 operator

$$V(\vec{q}) = \frac{9g_A^2 D_2 m_\pi^3}{128\pi^2 f_\pi^4} \pi \mathscr{I}\left(\frac{\vec{q}^2}{4m_\pi^2}\right),$$
$$\mathscr{I}(b) = \frac{2}{3} \left(1 + \left(\frac{1}{2\sqrt{b}} + \sqrt{b}\right) \tan^{-1}(\sqrt{b})\right).$$
Enhacement by π

F_2 and E_2 operators

V. Cirigliano, M. D, W. Dekens, S. Reddy (ArXiv:2411.00097)

 E_{2} , & F_{2} are enhanced for the same reason as D_{2}

 $\mathscr{L} = \frac{1}{4} \left[E_2 \langle (v \cdot u)^2 \rangle + F_2 \langle u \cdot u - (v \cdot u)^2 \rangle \right] (N^T P_i N)^{\dagger} (N^T P_i N)$

F_2 and E_2 operators

V. Cirigliano, M. D, W. Dekens, S. Reddy (ArXiv:2411.00097)

CONNECTION TO USUAL N3LO GRAPHS

N3LO potential

Bernard, Epelbaum, Krebs, Meissner '08,'11; Ishikawa, Robilotta '07,

CONNECTION TO USUAL N3LO GRAPHS

- Part of the 'conventional' N3LO potential is connected to D_2, E_2, F_2
 - Generates the divergent diagrams that induce D_2, E_2, F_2
 - Need to be considered simultaneously for a consistent calculation

ENERGY PER PARTICLE

The interaction energy density is obtained by calculating the matrix element of the potential (Hartree-Fock)

$$\langle \mathscr{H}(0) \rangle = \int_{\vec{p}_1, \vec{p}_2, \vec{p}_3} \theta(k_f - |\vec{p}_1|) \theta(k_f - |\vec{p}_2|) \theta(k_f - |\vec{p}_3|) \times \left[V_{ijk}^{ijk}(0, 0, 0) - V_{ijk}^{ikj}(0, \vec{p}_{32}, \vec{p}_{23}) + V_{ijk}^{jki}(\vec{p}_{21}, \vec{p}_{32}, \vec{p}_{13}) + V_{ijk}^{kij}(\vec{p}_{31}, \vec{p}_{12}, \vec{p}_{21}) - V_{ijk}^{kji}(\vec{p}_{31}, 0, \vec{p}_{13}) - V_{ijk}^{jik}(\vec{p}_{21}, \vec{p}_{12}, 0) \right]$$

ENERGY PER PARTICLE

The interaction energy density is obtained by calculating the matrix element of the potential

 D_2 and F_2 contributions to the energy per particle in **neutron** matter as a function of the density. D_2 and F_2 contributions to the energy per particle in **symmetric** matter as a function of the density.

 $|D_2|, |F_2| < 1/(5F_\pi^4)$

PRESSURE

How to determine D_2, F_2

From theory:

- First principles determination using Lattice QCD
 - Currently only calculations at unphysical m_{π}

From experiment:

- Determine D_2, F_2 together with $c_{D,E}$ from •
 - Light systems:
 - Nd scattering •
 - Binding energies tritium β decay
 - ۲
- with W. Dekens, C. Drischler, M. Kumamoto, S. Reddy

- Properties of dense matter ٠
- Properties of neutron stars •
- π -nucleus scattering

with C. Armstrong, W. Dekens, I. Tews, S. Reddy

e.g. Beane, Bedaque, Orginos, Savage, '06; Beane et al '15;

Gazit et al '09

FUTURE WORK: CONSTRAINING D_2 , and F_2

Constraint the operators

- Combines HF estimates of 3-nucleon force with 2nucleon contributions
- Fits to properties of dense matter near saturation

Total contributions to the energy per particle in **neutron** matter as a function of the density.

W

M. D, C. Drischler, W. Dekens, M. Kumamoto, S. Reddy (Preliminary)

CONCLUSIONS

- 1. We identified a new class of Three Nucleon-Forces
- 2. We estimate their contribution to the energy of neutron and nuclear matter
- 3. Future directions: constraining D_2 , F_2 , E_2

THANK YOU!

New class of three-nucleon forces

$$\begin{split} |D_2| &\leq 1/(5\,F_\pi^4), \\ |F_2| &\leq 1/(5\,F_\pi^4) \end{split}$$ Different regulators Long-range **Dim reg** 20 The Contraction of the Contracti 14 New contributions 15 12 Traditional 3N force 10 Nocutoff 10 E_{NM} (MeV) E_{NM} [MeV] 5 8 N=1 GeV 6 0 N=0.5 GeV 4 -5 D_2 2 F_2 Λ=0.3 GeV -10 └-0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 n/n_{sat} $n_n/n_{\rm sat}$

Long-range regulator

- Picks out the long-range part of the potential
- Reduces the contributions by factor of a few

$$X_{\text{long-range}}(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \frac{d\mu}{\mu^3} \,\rho_X(\mu) \bigg(\frac{q^4}{\mu^2 + q^2} + C_1(\mu) + C_2(\mu)q^2 \bigg) e^{-\frac{\mu^2 + q^2}{2\Lambda^2}} \,,$$

$$C_{1}(\mu) = \frac{2\Lambda\mu^{2} \left(2\Lambda^{4} - 4\Lambda^{2}\mu^{2} - \mu^{4}\right) + \sqrt{2\pi}\mu^{5}e^{\frac{\mu^{2}}{2\Lambda^{2}}} \left(5\Lambda^{2} + \mu^{2}\right) \operatorname{erfc}\left(\frac{\mu}{\sqrt{2\Lambda}}\right)}{4\Lambda^{5}}, \qquad \rho_{\mathcal{I}}(\mu) = \frac{1}{M_{\pi}} (2M_{\pi}^{2} - \mu^{2})\frac{\pi}{4\mu}, \\ C_{2}(\mu) = -\frac{2\Lambda \left(6\Lambda^{6} - 2\Lambda^{2}\mu^{4} - \mu^{6}\right) + \sqrt{2\pi}\mu^{5}e^{\frac{\mu^{2}}{2\Lambda^{2}}} \left(3\Lambda^{2} + \mu^{2}\right) \operatorname{erfc}\left(\frac{\mu}{\sqrt{2\Lambda}}\right)}{12\Lambda^{7}}, \qquad \qquad \mathsf{Epelbaum, Kr}$$

Epelbaum, Krebs, Reinert' 18; Epelbaum & Krebs, '23,'23

FOUR NUCLEON FORCE

$$i\mathcal{T} = -\,i4(\bar{N}N)^4\,\frac{d_2g_A^2}{F^4}\,\frac{S\cdot q_2\tau^d\,\,S\cdot q_1\tau^a}{((p_4-p_4')^2-m_\pi^2)((p_1-p_1')^2)-m_pi^2)}\,,$$

Effects on BSM scenarios

• D_2 induces m_{π} dependence of NN interactions

BSM scenarios can affect the quark masses

- Variations of fundamental constants
 - Lead to time dependent $m_q(t)$
- Axion scenarios
 - Axion could condense in dense matter like neutron stars
 - Would change $m_{\pi}(\theta = 0) \rightarrow m_{\pi}(\theta = \pi) \simeq 80 \,\mathrm{MeV}$
- Can be probed through their effect on the nuclear force
 - Requires m_{π} dependence of the nuclear force and D_2

Kumamoto, Huang, Drischler, Baryakhtar, Reddy, '24

THREE BODY POTENTIAL

$$\nu = \sum_{i} V_i d_i - 2I_p - I_n + 4L$$

SUCCESSFUL PREDICTIONS OF CHIPT

Highly successful in

- Meson sector
- Single baryon sector
- Multi nucleon (plus many body methods)

Ground-state energies of the oxygen isotopes for various many-body approaches, using the chiral NN+3N(400) interaction at $\lambda = 1.88$ fm⁻¹. H. Hergert (ArXiv:2008.0506)