What is hiding in the core of a neutron star?

Débora Mroczek

Illinois Center for Advanced Studies of the Universe (ICASU) University of Illinois at Urbana-Champaign

QCD matter in equilibrium

Changes in degrees of freedom and interactions leave thermodynamic imprints

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Weber et al. Mod.Phys.Lett.A (2014)

Surface

- Hydrogen/Helium plasma
- Iron nuclei

Outer Crust

- lons
- Electron gas

Inner Crust

- Heavy ions
- Relativistic electron gas
- Superfluid neutrons

Outer Core

- · Neutrons, protons
- Electrons, muons

Inner Core

- Neutrons
- Superconducting protons
- Electrons, muons
- Hyperons (Σ, Λ, Ξ)
- Deltas (Δ)
- Boson (π, K) condensates
- Deconfined (u,d,s) quarks/colorsuperconducting guark matter

Quantum Chromodynamics (QCD): theory that describes the strong interaction governing the behavior of quarks + gluons and hadrons.

<u>Phase diagram</u>: phase boundaries + physics of different phases in thermal and chemical equilibrium.

Phase transitions are thermodynamic singularities in the phase diagram.

Phase transition phenomenology

A system in thermal/chemical equilibrium can be described by thermodynamic state variables:

T: temperature, p: pressure, s: entropy, ε : energy density, μ_i : chemical potential, n_i : number density

Equation of state (EoS): relationship between thermodynamic variables, e.g. $p(\varepsilon)$

A phase transition is characterized by the lowest-order derivative of the free energy which is discontinuous at the transition.

Susceptibilities: $\partial_{\mu_{P}}^{n} p$

$$\left(\frac{\partial^n p}{\partial \mu_B^n}\right)_{\text{crossover}} \neq \infty \qquad \left(\frac{\partial^n p}{\partial \mu_B^n}\right)_{\text{nth-order}} \rightarrow \infty$$

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

We care about how **state** variables change and how they're related to each other inside a neutron star

What can we learn about QCD from neutron stars

The set of relevant independent thermodynamic state variables depends on the system.

For isolated, slowly-rotating neutron stars:

- 1) T = 0, since $T_F(\sim 10^{12} K) \gg T(\sim 10^{8-10} K)$
- β -equilibrium, producing neutrons is energetically 2) favorable at high densities.

Neutron decay : $n \rightarrow p + e^- + \bar{\nu}_e$ Electron capture: $p + e^- \rightarrow n + \nu_{\rho}$

 \rightarrow fraction of charged baryons, $Y_O^{\rm QCD} = n_O^{\rm QCD}/n_B$, is a function of density

3) The star is electrically neutral $\rightarrow n_{l^-} = n_O^{\text{QCD}}$

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Drischler, Holt, Wellenhofer, Annu. Rev. Nucl. Part. Sci. (2021)

How do we learn about equilibrium QCD from neutron stars?

- the total mass (M) of the star
- •For isolated, slowly-rotating stars, these observables depend **only on the EoS**.

From any EoS \rightarrow M-R, M- Λ sequence

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

•Neutron stars have macroscopic properties that we can measure \rightarrow how **big**^{*} and **squishy**^{**} as a function of

Modeling the EoS

Baryon number density (isolated, stable NS)

$$n_B = \frac{\partial p}{\partial \mu_B} \Big|_{\mu_Q}$$

Relevant scale: nuclear saturation density, $n_{\rm sat} \equiv 0.16 \, {\rm fm}^{-3}$

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

What are the relevant degrees of freedom and interactions?

Bonus question: how do we piece different regimes of the EoS together? Systematic biases are introduced by different choices!

6

Modeling the EoS

Baryon number density (isolated, stable NS)

$$n_B = \frac{\partial p}{\partial \mu_B} \Big|_{\mu_Q}$$

Relevant scale: nuclear saturation density, $n_{\rm sat} \equiv 0.16 \, {\rm fm}^{-3}$

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Bonus question: how do we piece different regimes of the EoS together? Systematic biases are introduced by different choices!

Bayesian statistics and choosing a prior

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Infinitely many possible EoS: How do we account for all possibilities?

- Common approach: sample from a statistical distribution \rightarrow Gaussian processes (GPs):
- EoS modeled via: $\phi(x) = \log(1/c_s^2 1)$, stable and causal

$$\phi \sim \mathcal{N}(\mu_i, \Sigma_{ij})$$

- Collection of functions, behavior specified by a mean and
- Squared-exponential is a common choice:

$$= \sigma^2 \exp\left[-\left(x_i - x_j\right)^2 / 2\ell^2\right]$$

l: correlation length σ : correlation strength

Influence of exotic degrees of freedom on the EoS from nuclear physics models

from: Tan et al. PRD (2022), see for refs.

q: quarks, H: hyperons

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

*exotic = beyond

Physically-motivated long + short/ medium length correlations in n_R

Mroczek et al., PRD (2024)

d p	+	n
-----	---	---

Are there nontrivial features in the c_s^2 inside neutron stars?

model evidence (\mathscr{C}): quantifies level
of support of the data for a given
modelBayes ian model comparison:Bayes factor $K = \frac{\mathscr{C}_{benchmark}}{\mathscr{C}_{structure}}$

• <u>Benchmark</u> model in gray: GP with long-range correlations fixed across all densities

n: neutrons, p: protons, e: electrons, q: quarks, H: hyperons

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Modified GP (mGP): multi-scale correlations
 → emergence of exotic degrees of freedom

Are $c_s^2(n_R)$ posteriors sensitive to structure in $c_s^2(n_R)$?

Constraints affect priors differently:

Long-range correlations \rightarrow **tighter** c_s^2 posterior New phases (structure) \rightarrow **broader** c_s^2 posterior

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

- EoS are shown up to n_R^{max}
- \rightarrow credibility bands are correlated with posterior for n_{R}^{max}

Does $c_s^2(n_R)$ display a peak within neutron star densities?

Bump in c_{s}^{2} : softening of the EoS signaling crossover to new degrees of freedom.

 \rightarrow global maximum in c_s^2 that occurs within neutron star densities

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Posterior

<u>Benchmark (GP)</u>: c_s^2 peak near $n_B^{\text{max}} \rightarrow \text{monotonic } c_s^2(n_B)$ <u>Benchmark + structure (mGP)</u>: **bump allowed** ~ $2 - 3 n_{sat}$

Takeaway and summary

- when exotic degrees of freedom are present.
- Performed a fully Bayesian analysis including astrophysical, low-energy, and pQCD constraints.
- Multi-scale correlations important for searches for a crossover within NS densities.

Neutron stars probe a regime of QCD that we cannot recreate in labs. The only way to extract information about QCD from neutron stars is through inference. Quantifying theory uncertainty on the EoS is a requirement.

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

• We find a **Bayes factor of K = 1.5** between GP and mGP \rightarrow current constraints do not favor either model.

Physical interpretation: multi-scale correlations and nontrivial features in $c_s^2(n_R)$ which signal the onset of new phases of matter inside neutron stars are **not ruled out** by current constraints, but **neither are** they required.

• Nuclear physics models predict **nontrivial features** in c_s^2 and **multi-scale correlations** across densities

• Introduced modified Gaussian processes as novel approach for modeling nontrivial features in c_{α}^2 .

Other approaches

CONSTRAINING THE SPEED OF SOUND INSIDE NEUTRON STARS WITH CHIRAL EFFECTIVE FIELD THEORY INTERACTIONS AND OBSERVATIONS

I. TEWS,^{1,2} J. CARLSON,³ S. GANDOLFI,³ AND S. REDDY^{1,2}

¹Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA ²JINA-CEE, Michigan State University, East Lansing, MI, 48823, USA ³Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Phase Transition Phenomenology with Nonparametric Representations of the Neutron Star Equation of State

Reed Essick,^{1,2,3,4,*} Isaac Legred,^{5,6,†} Katerina Chatziioannou,^{5,6,‡} Sophia Han (韩君),^{7,8,9,§} and Philippe Landry^{1,¶}

¹Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 ²Department of Physics, University of Toronto, Toronto, ON M5S 1A7

³David A. Dunlap Department of Astronomy, University of Toronto, Toronto, ON M5S 3H4

⁴Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5

⁵TAPIR, California Institute of Technology, Pasadena, California 91125, USA ⁶LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

⁷Tsung-Dao Lee Institute and School of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China

⁸Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA

⁹Department of Physics, University of California, Berkeley, CA 94720, USA

(Dated: June 9, 2023)

Astronhysical observations of neutron stars prohe the structure of dense nuclear matter and have the

+ many others

Consensus: posteriors are **sensitive to** changes in modeling assumptions (**priors**) → **data is not yet informative** w.r.t. to details in the EoS representation.

¹Department of Physics and Astronomy and Institute of Nuclear and Particle Physics, Ohio University, Athens, OH 45701, USA ²Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA ³Department of Physics, The Ohio State University, Columbus, OH 43210, USA ⁴Department of Physics, Chalman University of Technology, CE 11006, Cötchem, Surder, Surder,

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Investigating Signatures of Phase Transitions in Neutron-Star Cores

R. Somasundaram,^{1, *} I. Tews,² and J. Margueron¹

¹Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3,

IP2I Lyon, UMR 5822, F-69622, Villeurbanne, France

² Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Dated: March 22, 2023)

Nonparametric extensions of nuclear equations of state: probing the breakdown scale of relativistic mean-field theory

Isaac Legred D,^{1,2,*} Liam Brodie D,^{3,†} Alexander Haber D,^{4,3,‡} Reed Essick D,^{5,6,7,§} and Katerina Chatziioannou D^{1,2,¶}

¹TAPIR, California Institute of Technology, Pasadena, CA 91125, USA

²LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA

³Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA

⁴Mathematical Sciences and STAG Research Centre,

University of Southampton, Southampton SO17 1BJ, United Kingdom

⁵Canadian Institute for Theoretical Astrophysics, 60 St. George St, Toronto, Ontario M5S 3H8

⁶Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7

⁷David A. Dunlap Department of Astronomy, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4

Microscopic constraints for the equation of state and structure of neutron stars: a Bayesian model mixing framework

A. C. Semposki (0,1,* C. Drischler $(0,1,2,\dagger$ R. J. Furnstahl $(0,3,\ddagger$ and D. R. Phillips (0,1,4,\$)

⁴Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden (Dated: June 10, 2025)

Finite temperature expansion of the dense matter EoS

<u>Dense matter</u> (in this work) \rightarrow hadron/quark states the regime relevant for neutron stars.

Starting from an **arbitrary NS EOS, reconstruct a 3D EOS** for numerical relativity simulations.

1) **Baryon number density** (isolated, stable NS)

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

<u>Dense matter</u> (in this work) \rightarrow hadron/quark state of matter with no strange degrees of freedom in

What is needed (pt. 2) and our approach

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Mroczek et al., 2404.01658

From β -equilibrium to arbitrary charge fraction

• Symmetry energy expansion derived in Bombaci and Lombardo (1991), modified in Yao et al. (2024):

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Coefficient	Definition	Range	References
$E_{ m sym,sat}$	$\left(rac{E_{\mathrm{PNM}}-E_{\mathrm{SNM}}}{N_B} ight)_{n_{\mathrm{sat}}}$	$31.7\pm3.2~[{\rm MeV}]$	Multiple data analyses from nuclear physics and astrophysics
$L_{ m sym,sat}$	$3n_{ m sat} \left(rac{dE_{ m sym,2}}{dn_B} ight)_{n_{ m sat}}$	$58.7 \pm 28.1 \ [{ m MeV}]$	Multiple data analyses from nuclear physics and astrophysics
$K_{ m sym,sat}$	$9n_{ m sat}^2ig(rac{d^2E_{ m sym,2}}{dn_B^2}ig)_{n_{ m sat}}$	$106\pm37~[{\rm MeV}]$	PREXII [122, 123]
		-120^{+80}_{-100} [MeV]	Bayesian analyses inferred from GW170817 and PSR J0030 $+0$
$J_{ m sym,sat}$	$\Big 27n_{ m sat}^3ig(rac{d^3E_{ m sym,2}}{dn_B^3}ig)_{n_{ m sat}}$	$300\pm500~[{ m MeV}]$	Many-body nuclear theory [125]

Yao et al. PRC 109 (2024)

17

From T = 0 to finite T

Entropy!

$$s(T = 0) = 0$$

$$p(T, \vec{\mu}) \approx p_{T=0} + \frac{1}{2} \frac{\partial S}{\partial T} \Big|_{T=0,\vec{\mu}}$$

$$T^{2}$$

$$T^{2}$$

$$T^{2}$$

$$T^{2}$$

- Ideal Fermi systems at $T \ll T_F$, $p \approx p_{T=0} + aT^2 + bT^4 + \dots$
- Fermionic quasi-particles

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Expansion parameter $(T/\mu_B) < 0.1$ in relevant regime Koverlap with few-GeV $\sqrt{s_{NN}}$ freeze-out (FO)

FO fit from Cleymans et al, PRC 73 (2006), HADES FO from Harabasz et al, PRC 102 (2020)

From T = 0 to finite T, test with microscopic model

• Numerical tests with relativistic mean-field (RMF) theory (n+p) well suited for the expansion

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

T^2 term captures the finite temperature behavior of the pressure to high accuracy when $\partial s/\partial T$ is known

- Breakdown near liquid-gas PT
- Linear coefficient
- \rightarrow easy to parametrize
- T^2 term dominates

But: must know $\partial_T s$ for all μ_B, μ_Q

Microscopic model: RMF theory from Alford et. al PRC 106, (2022)

Charge fraction dependence of finite temperature effects

Heat capacity across all $\overrightarrow{\mu}$ can be extracted from microscopic models

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

- Motivation: s/n_B for a given (Z/A, $\sqrt{s_{NN}}$) can be extracted from thermal fits of particle yields \rightarrow Expand $\partial_T(s/n_B)$ about SNM assuming isospin symmetry
- New expansion:

$$\begin{aligned} \frac{\partial \tilde{S}(T, n_B, Y_Q)}{\partial T} \bigg|_{T=0} &= \frac{1}{n_B} \frac{\partial s_{\text{SNM}}(T, n_B, Y_Q)}{\partial T} \bigg|_{T=\delta=0} + \\ & \frac{1}{2} \left(1 - 2Y_Q \right)^2 \frac{\partial^3 \tilde{S}_{\text{SNM},2}(T, n_B, \delta = 0)}{\partial T \partial \delta^2} \bigg|_{T=\delta=0} \end{aligned}$$

Heat capacity dependence on Y_O

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Summary

- Proposed: **two new expansions** for obtaining finite T, Y_O equation of state
- Allows for beyond np degrees of freedom, path for incorporating **theoretical** + **experimental** + **observational information** \rightarrow HIC system/energy scan
- Reproduce a microscopic EOS up to T=100 MeV for $\mu_B \gtrsim 1100$ MeV (~ 1 – 2 n_{sat}) within 5% error
- Clear method for **uncertainty quantification**

Outlook

- <u>Caveats:</u> no strangeness, no phase transitions \rightarrow both solvable
- <u>Future study:</u> reducing numerical error, **low-density EOS** at finite T, Y_O (e.g. hadron resonance gas)

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

problem:

 β -equilibrium { $p(n_B), Y_Q(n_{n_B})$ } \rightarrow 3D EOS (T, n_B, Y_Q)

Are M-R posteriors sensitive to structure in $c_{s}^{2}(n_{R})$?

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

Astrophysical and theoretical constraints

D. Mroczek (ICASU/UIUC), CIPANP 2025, Madison, WI.

*more on pQCD later

Low-energy Symmetry energy: $E_{\rm sym} = 32 \pm 2 \,\,{\rm MeV}$ Tsang et al. PRC (2012)

pQCD*

- partial N3LO results, propagated using causality, stability, and integral constraints down to $\mathbf{n}_{\mathbf{R}}^{\max}$ for each EoS.
- Truncated expansion uncertainty accounted for with scale-averaging.

pQCD results: Gorda et al. PRL 127 (2021) and PRD 104 (2021)

